Redução de Dimensionalidade para Diagnóstico de Falhas em Transformadores de Potência
Thales Wulfert Cabral, Larissa Almeida, Eduardo de Lima, José Cândido Silveira Santos Filho, Luís Geraldo P. Meloni

DOI: 10.14209/sbrt.2023.1570923197
Evento: XLI Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT2023)
Keywords: Machine learning dissolved gas analysis power transformer fault diagnosis signal processing
Abstract
Power substations face high operating costs for implementing fault monitoring in power transformers, which requires monitoring equipment installation and signal processing. This work investigates two approaches to alleviate such costs in the context of gas-in-oil-based fault diagnosis: (i) modern dimensionality reduction techniques or (ii) brute-force reduction using fewer gas sensors. Both approaches incorporate machine learning architectures and are explored here for a minimum (unity) output dimension. In addition to being less costly, a brute-force solution with the exclusive use of hydrogen gas proves superior for most performance metrics.

Download