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Abstract—Data compression will be extremely necessary in or-
der to solve the problem of large data volume generated by smart
meters. The aim of this work, is to investigate the source coding
theory, which establishes the entropy as a fundamental limit on
the performance of conventional data compression algorithms
applied to daily load curve of a typical resident consumer. We
have proposed the applying of Pulse Code Modulation+Huffman
and Differential Pulse Code Modulation+Huffman as methods
to represent the consumption as few bits are possible, and we
have explored the performance of compression when the typical
sampling period of 15 minutes is reduced. Furthermore we have
determined the second and third order entropies as a limit to
data source compression schemes.

Index Terms—Smart Grid, Smart Meter, data compression,
entropy.

I. INTRODUCTION

The electrical network has presented almost no advances

when energy metering technology is considered. Traditionally,

the power grid refers to interconnected transmission system

using analog technology. Although humans are well equipped

for analog communications, it is not particularly efficient for

data storing and data transmission. Today the smart grid is

widely considered to be the next-generation of a supposed

digital electricity grid. The new platform is devised to use

smart meters as a measurement device of electricity flow from

the energy utility to the customers, and vice versa. Of course,

this new platform has received enormous attention, because it

offers many options and capabilities that are not possible with

traditional meters. Energy utilities companies, all around the

world, are starting to use smart meter technology [1], [2].

The smart meter is a digital meter that is located at home or

business to measure the amount of electricity used and stores

it over short intervals. It remotely sends this information from

different networks to the central operation point, as shown in

Fig. 1 [3]. However, since the whole population will shortly

start using this new device, a huge amount of data is expected

to be transmitted and stored over time. Utilities will have

to solve the data collection problem, storage challenges, and

learn how to analyze and act based on this new information.

Accurate demand forecasting is essential to energy planning

and trading.

This is the reason for this work, whose aim is to use

data compression techniques on the native format of energy

consumption, in order to alleviate the cost of data transmission.
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The proposed process is sketched in Fig. 3, which will be

explained along the paper.

Moreover, the traditional sample period of 15 minutes is

analyzed and as will be shown, we prove that this is not the

appropriated time in order to avoid the information loss. All

the analysis is based on the entropy of the energy demand

curve.

Although, the compression scheme for data networks is an

old solved problem, to the best of these author’s knowledge,

this problem has never been investigated to daily load data in

the literature.

For a better understanding, the paper is organized as the

follow. The Section II describes the scheme proposed and it

presents the important concepts to use for understanding of the

process. The Section III details the algorithm used to create

of daily consumption readings and the mains parameters. The

Section IV shows the results obtained and its analysis the

performance. Finally, the Section V presents the conclusions

reached about the project.

Fig. 1. Smart Grid Infrastructure. Source: [3].

II. DATA COMPRESSION MODEL

The analog daily load curve defined as x (t), as show in Fig.

2, it represents the consumption of a typical residence along

the day. Normally, the peak DM of this curve is around the

time that most of the domestic devices are used.

In the new smart meter devices, x (t) will be sampled at

time kT , k ∈ integers. In principle, according to the Nyquist

criteria, the correct value of T would produce no loss of

information. In the sequel, the equivalent discrete sampled load

curve xT will be quantized. This quantization block inserts,

depending on the number of used bits, certain distortion. The

output of quantization block can be represented either in PCM

(pulse code modulation) format or DPCM (differential pulse
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Fig. 2. Daily load curve (KW x h)

code modulation) format. After the quantization block, the

signal is then compressed using Huffman algorithm [10]. All

the steps are shown in Fig. 3.

Fig. 3. Block diagram of data compression.

A. Quantization

The digital processing of daily load signals xT , where the

source alphabet is not discrete, requires an infinite number of

bits. Therefore xT must be quantized to its discrete representa-

tion xi with a finite number of levels. PCM and DPCM belong

to this class.

The sampled signal is divided into N non overlapping re-

gions called quantization intervals Ii, i = 1, 2, .., N [10], [13]

and the number of bits required to represent each codeword

would be log
2
N . All quantization intervals Ii are of equal

length and with these definitions, the following can be stated:

xT ∈ Ii ↔ Q (xT ) = xi (1)

Since we will be interested on the distribution of the levels

xi, we defined the probability of occurrence of level xi as pi,
in such a manner that

∑N

i=1
pi = 1. This quantization process

is a lossy data compression, because the decompressed data

is not exactly the same as the original data. Instead, some

amount of distortion D is tolerated [10], [13]. The distortion

is defined in a usual way as:

D = E[(xT − xi)
2] =

∫ ∞

−∞

(xT − xi)
2f(xT )dxT (2)

where f(xT ) denotes the probability density function of the

source random variable xT .

The signal-to-quantization-noise ratio (SQNR) is defined as:

SQNR|dB = 10 log
10

E[xT
2]

D
(3)

In particular, PCM quantizes the sampled signal xT directly

in xi. Unlike PCM, the quantizer DPCM is designed to

quantize the differences between two consecutive samples.

Also DPCM uses a predictor to produce an estimate at each

step [13]. The schematic of a PCM and DPCM systems are

shown in Fig. 4, and Fig. 5, respectively. DPCM system can

Fig. 4. Schematic of a PCM System.

Fig. 5. Schematic of a DPCM System.

be described by the following equations:

eT = xT − x′
T−1

(4)

ei = Q[eT ] (5)

x′
T = x′

T−1
+ ei (6)

where, x′
T−1

is the predicted reconstructed value; x′
T is the

reconstructed value; eT and ei are the prediction error and its

quantized value, respectively [13].

B. Lossless Data Compression

The source coding theory sets as a fundamental limit on the

performance of all data compression algorithms [11], the first

order entropy H1 is given by:

H1 =

N
∑

i=1

pi log2

(

1

pi

)

(bits/quantized value) (7)

which is a function of the first-order distribution pi.
When all the levels are equally likely to occur ( i.e., pi =

1/N ), the first order entropy is given by:

H1 = log
2
N (bits/quantized value) (8)

The fundamental source coding theorem states that the

average length of a code L is defined by:

L =
N
∑

i=1

lipi (bits/quantized value) (9)

where li is the individual codeword length and according to

entropy theorem L ≥ H1 [10].

The entropy defined in (7) is appropriated for random

variates. However for random process, the appropriated metric
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would be the entropy defined as H [12]. For random process

which can be represented by a Markov chain of second-order,

the second-order entropy is defined as:

H2 =
N
∑

j=1

pj

N
∑

k=1

Pk|j log2 Pk|j (10)

where Pk|j is the conditional probability that the present

sample is xk given that the previous sample was xj .

In a similar way, if the random process is better described

by a Markov Chain of third order, the third order entropy rate

is defined as:

H3 =
N
∑

j=1

pj

N
∑

k=1

Pk|j

N
∑

m=1

log
2
Pm|k,j (11)

where Pm|k,j is the conditional probability that the present

sample is xm given that the previous sample was xk and the

one before that was xj .

For a correlated random process, as the daily demand profile

process, these metrics would be of interest since it represents

the limit of on the number of required bits to represent each

sample xi.

III. DAILY LOAD PROFILE SIMULATOR

We obtain the daily load curve of residential consumer using

[5], [7] at a sample rate of 1/900 Hz, meaning data capture

periods of 15 minutes. Modeling a residential load curve

considers the typical use of some household appliances, such

as shower for heating water, microwave for food preparation,

refrigerator for food storage, fan for environmental condition-

ing, lamps, stereo, TV, computer, DVD, washer, iron, etc. The

average power (Watts), average duration (min) are based on

[8]. The average peak time (hour) is based on [7]. This is

shown in Table I.

TABLE I
APPLIANCES - CONSUMPTION AND POWERS

Average Average Average

Appliances Power Peak Time Duration
(W) (h) (min)

Refrigerator 90 - -

Shower 3500 7, 20 8

Microwave 1200 9, 12, 19 10

Iron 1000 10, 17 10

Washer 500 9, 17 30

Computer 180 10, 18 300

Fan 120 12 240

TV 110 11, 21 180

DVD 100 22 60

Lamp 100 20 240

Stereo 45 10, 18 240

Therefore, this random simulation is performed in order to

take into account the usage habits of the appliance. As an

example, the room light is on during the night and normally

turned off when residents go to sleep. However, the refrigerator

is constantly connected although switches on and off as a

function of internal temperature. For the sake of simplicity,

this load is considered with a fixed power value along the

day.

Based on Table I, it generates a Gaussian random variable

for each appliance with mean set as the time of largest use and

arbitrary standard deviation (for example 2 hours). Once the

random variates is drawn, the table column average duration

and average power is respectively employed in order to assign

the duration and demand of each appliance.

The simulation considers average demands in the period of

15 minutes. For example, suppose that a shower with power

of 3.5 kW is turned on for 8 minutes. Then, it means an

average power in 15 minutes of 3.5 · 8/15 = 1.86 kW .

Consequently, the load curve for each equipment is sim-

ulated, and the curves are summed up leading to a daily

load curve for one consumer, as illustrated in Fig. 6. This

is a possible load profile for only one day of consumption

and not a profile of average consumption, and this individual

consumption is not necessarily the same every day, because

there is randomness. For this reason, our simulator performs

the average of several curves as shown in Fig. 7.
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Fig. 6. Daily Load Profile for a single Residential Consumer with a sample
time of 15 minutes.

In order to validate our simulator, the resulting simulation

curve was compared to real data obtained from [9]. The real

measured curve is presented in Fig. 8.

IV. DATA ANALYSIS

Now with the simulator and the use of entropy of first,

second and third order, it is possible to conclude several

important points.

A. Sampling data rate

In the literature, a very well established sampling period of

T = 15 minutes is largely used. Of course, by increasing the

sampling rate we can get any disturbance on the demand curve

that could be explored by the network operators. On the other

hand, the larger the sampling rate the larger will be the amount

of data to be transmitted. So it is clear that there is a trade-

off between these two quantities. In order to investigate what
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Fig. 7. Average Daily Load Profile for a Residential Consumer with at
sampling time T = 15 minutes.
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Fig. 8. Real average measured Daily Load Profile for a single Residential
Consumer with a sample time of 15 minutes. Source: [9].

would be the ideal sampling rate, Fig. 9 shows how entropy

changes with different sampling period. It is noteworthy to

point out that there is no significantly change in the entropy

for a sampling period less than 1 minute. That is, it is useless

to increase the sampling rate above of this number since there

will be no gain in entropy. In other words, 15 minutes of

sampling period implies in a loss of information.

B. PCM versus DPCM

Using both PCM and DPCM techniques, Fig. 10 shows the

average length as a function of the number of quantization

levels. As can be seen, in the best case, DPCM reduces about

20% the average length. Note also in this figure, how the PCM-

Huffman code approaches the first order entropy, as expected.

This figure is also very useful to estimate the total number

of bits and therefore the hard memory to store the information.

Since we have T=15 minutes, in one day it will be necessary

24/0.15 = 96 samples. Considering 256 quantization levels
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Fig. 9. First order entropy for sampling periods T = 15 min, T = 10 min,
T = 1 min, T = 0.5 min and T = 1 sec.
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Fig. 10. Entropy using a uniform source distribution and first order distribu-
tion, and average number of bit given by Huffman coding, for both PCM and
DPCM, at sampling period T = 15 minutes.

and the use of PCM-Huffman, the total number of bits will

be 6× 96 = 576 bits a day. It seems a negligible number, but

when we consider a city with 17 millions of people like São

Paulo, it would imply in almost 10 billions of bits a day, which

is an impressive number! If the same rationale is performed

to a DPCM coder, we obtain 9 billions of bits. These number

highlight the importance of our analysis.

C. Second and Third Order Entropies for Daily Demand

Curves

In order to investigate further the effect of the correlation

among the sampled values, we have calculated the second and

third order entropies rates as defined in (10) and (11), respec-

tively, as shown in Fig. 11. The results are very impressive

since it shows that better compression schemes can be used in

order to exploit the correlation. As can be seen, for number

of quantization levels equals to 256 and sampling period of
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T=1 minute, a code with only two bits per sample would be

required, which represents a reduction of 67% when compared

to a pure PCM-Huffman scheme.
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Fig. 11. First-Order Entropy, Second-Order entropy and Third-Order Entropy
at sampling period T = 1 minute.

V. CONCLUSIONS

We have concluded that DPCM+Huffman was able to

reduce the information about 20%. Moreover, choosing an

appropriate sample rate for smart meters is a very important

decision that may affect in loss of information or amount of

data to be transmitted. So, decreasing the sampling period of

smart meters to 1 minute will increase the amount of data to

be transmitted. This conclusion is not based on the traditional

Nyquist criteria, but rather on the entropy of the signal source.

In order to investigate further the effect of the correlation

among the sampled values, we have calculated the second and

third order entropies rates. The results are very impressive

since it shows that better compression schemes can be used

in order to exploit the correlation. Using a sampling period

of T=1 minute, a code with only two bits can be used, which

represents a reduction of 67% when compared to a pure PCM-

Huffman scheme.

Therefore, the results of this framework can give us a useful

tool to anticipate the data load management effects.
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