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A Message-passing Approach to Precoder Selection in
Wireless Communication Networks

Igor M. Guerreiro, Dennis Hui, and Charles C. Cavalcante

Abstract— This paper addresses distributed techniques to the probta
of precoder selection in a multi-cell scenario. This proposs an iterative
method based on a message-passing procedure in factor graphA
particular example of discrete precoder codebook is consg@ed for
transmission of a single data stream on two transmit antenns For
more realistic results, the wireless channel is modeled bed on mea-
sured data. Evaluations on the potential of such an approachin a
wireless communication network are provided and its perfomance and
convergence properties are compared with the greedy apprah. Also, the
output of the first iteration of the graph-based method is conpared with
greedy solution. Simulation results for the precoder selgédn example
are presented and discussed, which show that the graph-baséechnique
generally obtains gain in sum rate over the other approacheat the cost
of a larger message size. Besides, the proposed method u$uetaches the
global optima in a efficient manner in terms of computationalcomplexity
and signaling load.

Keywords— distributed optimization; message-passing algorithm; &c-
tor graphs; precoder selection.

|. INTRODUCTION

In a cellular network, there are many occasions in which eath
needs to set a parameter value, such as reference sigmamtta

beam coordination among base-stations in [4], [5], [6], THe basic
idea in those works is to model the relationship between dical |
parameters to be coordinated among different communicatoaies
of a network and their respective performance metrics otsaasing
a factor graph [3]. In [4], [5], the belief propagation algbm is
adopted to solve the downlink transmit beamforming probiana
multi-cell multiple-input-multiple-output (MIMO) systa consider-
ing a one-dimensional cellular model. Moreover, in [6], Edme
message-passing algorithms (including the sum-produgzrighm)
are deployed to coordinate parameters of downlink beanifayrim
a distributed manner in a multi-cell single-input-singletput (SISO)
system.

In this work, we propose a method founded on the min-sum

algorithm on factor graphs for the application of precodelestion
in a distributed manner. Different from our work in [8], wieethe
underlying method was applied to the problems of transntrara
selection (TAS) and fixed-beam selection, in this work pdéog
matrices are considered to be coordinated. Based on facphg, a
variant of the sum-product algorithm [3], namely the mimasalgo-
rithm [9], can then be applied in order for all nodes, throitghative

power, beam direction, or scheduled user, in such a way treat tnessage passing with their respective neighbor nodescidedepon

setting is, preferably in a compatible way with the settimjsthe
neighboring cells, in order to achieve a certain notion diroality,

the best set of local parameters that can collectively miaeina
global performance metric across the network. The algorigfiows

such as maximizing the average system or user throughpuheof each communication node to be indecisive of its own decisiail
entire network [1], [2]. The choice made by one cell on a locgufficient information about how its decision would affewt toverall

parameter often affects the interference level experigniog its
immediate neighbors and hence their respective choices oratheir
local parameters, which in turn would influence the choiceslenby
their neighbors’ neighbors.

In some cases, such as the transmit power control or preceder

lection problems, the parameter is dynamic and requiresdaation
to be continually performed. Therefore, a systematic nulogy
for coordinating the choices of any parameters across ttveonle is
desired. Moreover, in order to facilitate flexible, densgldgment
of small base-stations in future cellular networks, thesealso an

network performance is accumulated. The performance ol suc
graph-based method along with other distributed methadsgame-

theoretic approach [10], for coordination of discrete paeters in a

wireless communication network are evaluated.

Il. SYSTEM MODEL
Consider a communication network wiffi communication nodes.

A communication node described here represents a pair d&- bas

station (BS) and its associated user equipment tUE)a multi-
cell MIMO system. Particularly, only downlink transmiss® are

considered. Each BS hay; available transmit antennas and each
UE hasN, receive antennas. Let; denote a discrete parameter of
the ith communication node, or simply nodewhose value is drawn
from a finite setP; of |P;| possible parameter values for that node,
where|P;| denotes the cardinality oP;, and let

increased interest in methods of performing the coordinatbf
parameters among neighboring cells in an autonomous atibdied
fashion without a central controller, as any unplanned tamdi(or
removal) of base-stations can substantially alter theesygbpology
and thus the preferred settings.

Factor graph and the associated sum-product algorithm Ihese _ T
widely used in probabilistic modeling of the relationship@ng inter- p= [p1 P2 pN]
dependent (random) variables or parameters. There arerausne be a vector collecting all the parameters in the network,reshe
successful applications [3] including, most notably, eas fast- .
converging algorithms for decoding low-density parity chéLDPC) pi€Pii=12...,N.
codes and turbo codes, generalized Kalman filtering, fasiri®o  Each node is associated with a list/; of proper neighbor nodes
transform (FFT), etc. Similar (but different) applicat®of factor (i.e. excluding nodeé) whose choices of parameter values can affect
graphs have also been recently proposed for the problemstf fehe local performance of node For convenience, also let
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Coupling Matrix  (linear scale, arbitrary unit)

with its ordering of parameters determined by the sortedcewdin 2 : :
A;. Associated with each nodeis a performance metric or cost,
denoted byM; (p.4,), which is a function of those parameters in the
neighbor list4; of nodei. Each node is assumed to be capable of 16
communicating with all nodes inl;.

In this work, each parametg; represent a precoding matrix index
(PMI) for BS 7 indicating which precoder from a predetermined set  12-
P; of precoders that BS should use at a certain radio resource
block to transmit signals. In practical systems, differ&tiEs may
be scheduled, and thus different precoders may be usedfexedt o8
radio resource blocks. In this case, the coordination ofquers may
be performed independently for each individual radio reseiblock.

The BS: transmits precoded and spatially multiplexed vector o4r
to its associated UE The vectorx; is defined as 02

1 0
Xi = Wisi, 1
[\/‘5 Transmit Eigenmodes

where N; is the number of data streams, is the N, x 1 spatially Fig. 1.
multiplexed (SM) symbol vector an®V; € W is the N; x N
precoding matrix specified by the parameterHere, WV is the finite

set of all precoding matrices available for every commuivcanode MIMO channel response was drawn from a dataBetf measured
in the network. In order to index the elements Jf, assume an channel matrices acquired by Ericsson Research duringureasnt
index setZ, which is equivalent toP; for all the communication campaigns made in Kista neighborhood, in Stockholm, Swetke
nodes. Then, a bijective functiofi: P; «» W maps the elements measurement campaigns were performed using a single B&dotec
of P; onto the elements ofV properly. This work focuses on the the roof of a building and a UE mounted inside a van at a coeveni
particular case of precoding matricéé for the N; = 2 andN, =1, driving speed (see more details in [11], [12]). A total of D

141

0.6

Estimated power coupling matrix of 1x2 MIMO channehtrices.

considering complex weighting, case. That is, samples ofl x2 channel matrices measured along a particular route of
1 1 1 1 Kista compounds the s&. For the sake of removing any “original”
W= { M ) {_J ) M ) {_]} }, (1) large-scale fading effect, each entry of the channel nesriwas
previously transformed into a zero-mean and unity-vagavariable,
and such that
P =T =1{1,2,3,4}. ) Dyl —po
Hjil, = ——— (6)
. . . . . . oD
The sampled incoming signal vector at the Wi given as being where D,; € D, for [ = 1,2, randomly picked up from seD,
yi = guHiixi + Z VIiiHix; + v, (3) s associated with receiveir and transmitteti, .p and o7, are the
JEN; mean and the variance of the entries of the matricé3,iandH; is

the transformed MIMO channel matrix also associated witleixer
j and transmitteri. The index! indexes the elemertl, /) of both
matricesD ;; andH ;. Then, the path loss modeled by the parameters
gji 1S in turn inserted to the matrik;; according to (3). It is worth
noting that each element @ is randomly chosen only once so that
each pair of receiver and transmitter has a different cHamagrix.
Particularly, the resulting channel matrices are chariaete by the
o ( 1 )a ) presence of only one eigenmode. Such a feature is observéet in
95t = dji )’ estimated power coupling matri [13] of resulting MIMO channel

where the constant refers to the path loss exponent adg is the matrices, which is showp in Figure 1. The matfixshows thg spatial
distance between the transmittgrand the receivei. The second arrar_lgement Of. scattering objects between Fhe_ transrater the
term on the right-hand side refers to the interference chbsethe receiver, where its columns refer to the transmit eigenrsoidfe rows

neighboring communication nodes. For each transmitteratrerage geéecelve e'ngmOdlels'hTh'S_ matfrlx ch_aracte:jlzes thn(;rjeedmta;]s_et
transmit power is constant and given by . Consequently, as all the pairs of receiver and transnutew their

channel matrices fror®, they observe the same spatial correlation.
E {||x:[?} = Nitr (WWH) — Pr, (5) The motivation to use such a channel model is to provide alsieit
s scenario for the beam selection technique, which usuallyefits
where Pr is the average transmitted power in units of energy pémom the characteristics of spatially-correlated charmatrices.
signaling period. Also, the symbols are assumed to be usleded,
which means thal {sisf{} =In,. 1. PARAMETER COORDINATION PROBLEM

The channel response includes both a fast fading compomeht a Qur goal is for each nodeto find, in a distributed fashion, its own
a path loss component, the latter determined by the distaglweeen optimal parametep;, which is the corresponding component of the
the corresponding BS and UE, according to (4). A basic systeatel optimal global parameter vectgs* that minimize the total (global)
is therefore needed to compute the relative distances batB8 and performance metric given by
UEs for each random drop of UEs in the cell grid consideringdix
BSs’ positioning. For convenience, the log-normal shadgwhas M (p) = ZMZ' (pa,). @)
not been modeled in this work. To obtain more realistic tss@ach '

whereH;; denotes the MIMO channel response from B® the UE
served by BS in the downlink,quasi-static over a data block, and

is a zero-mean circularly symmetric complex Gaussian (ZKIGH
noise vector with covariance matriX,I. The constany;; is a gain
that corresponds to the path loss of each signal, here nibdtela
simplified way as being
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where M; (p.4,) that represents the negative of the data througinode grows only linearly with the cardinality of the set ofgraeters
put [14], [15] of the cell corresponding to BSThe local performance P; since only the parameters of the node itself is consideretien
metric of nodei, i.e. M; (p.4,), is measured by optimization at the node. More precisely, in this approahb, local

L e parametemp; at each communication node is iteratively chosen as
M; (pa,) = —logdet (I+ |gu|R; "HL W, WI'HI ), (8)

(n+1) = in M; (pa, 11
whereR;;, defined herein as Ps,i argp?lm i(Pay) P, =PY'N, (1)
A HyyH
Ri £ Ry, + Y |9;i[H;i W, W HJ], (9)  wheren is the iteration indexy ", denotes the choice gf made at

IEN: iterationn + 1 using this selfish/greedy approach, eps@?)v denotes

denotes the covariance matrix of the noise-plus-intemfegeexperi- the vector of those parameter choices made by nodag @t thenth
enced by the UE served by BSn the downlink given thaRy, is iteration. In turn, the parameter;’) at each node is exchanged to
the covariance matrix of the noise vector. its neighboring nodes so that every node obtains its pagarwettor
Hence, the goal here is to employ a distributed algorithnitferBS pgﬂ)\f' to compute its next parametﬁg"jl). From a game-theoretic
to negotiate their choices of downlink precoding matricéth iheir pefsf)ective, the greedy solution maﬂl be seen as a non-ativeer
respective neighbors so that the total data throughpugimétwork is  game defined as a pure-strategy Nash equilibrium (NE) [16].
maximized. This problem of coordinating parameters candbeed Remark 1: Considering some simplifications, the solution for
adopting basically two types of solution$) centralized approach, precoder selection described in [17] can be seen as a steghtion
which yields the optimal global parameter vector; @)dlistributed of the greedy solution, particularly the first iteration.afhs, such

approaches, which on one hand often provide sub-optimatisns 5 solution is the first best response reaction in (11), whicly e
through greedy techniques such as non-cooperative gamiesi the formulated as

other hand can provide near-optimal solutions by using agespass

in factor graph. pr,: = argmin M; (p.a;) o (12
Pi PN; :pS,Ni
A. Centralized Solution wherep;, ; denotes the choice gf; based onpgj\[i, which corre-

Conceptually, the simplest approach to the optimizatiasblem sponds to the vector of those parameter choices made by modes
described above is to solve it jointly at a central locatigndirect Ni atn =1 in the greedy approach.

computing In the following we describe another approach to the probdém
minimizing the global metric in (7) by modeling the commuation
pou N nodes and the associated local performance metrics usirgter f
Pc = pe2 arg min Z M; (pa;), (10) graph.
p =
pc,N

L . . o ) IV. M ESSAGEPASS IN FACTOR GRAPHS
which is an optimal solution to the problem by definition. A jora

issue of this approach is its huge computational complerityarge A factor graph is a bipartite graph consisting of a set of atals
network sizelV, as the complexity grows exponentially as the numbdl°des and a set of factor nodes. Each variable node repseaent
of communication nodes increases, along with the inherégit h variable and can only be connected to a factor node (but rathan

signaling load (backhaul traffic) between the communicatiodes variable node) through an edge, while each factor node septs a
and a central processing unit factor which is a function of some of the variables. A factode is

The computational complexity of the centralized solutisinideed Cconnected to a variable node if and only if the corresponélingtion
very high. The minimum (or maximum) value of a cost (utility)éPresented by the factor node depends on that variable.
function is usually found throughout all the combinationstoe ~ CGiven a multivariate function, a factor graph expressesnhene-

discrete parameters. The total number of combinations i@peters matical structure of the factorization of such a multivegifunction
into several local functions. In our problem at hand, théglgerfor-

c is given by k ! mod
N mance metridl/ (p) is factorized into a sum aV local performance
c= H |Pi] . metrics M; (p., ), which is described in (7) [8]. Specifically, for the
i=1 problem formulated above, we associate each variable nitietive
For instance, if the network had’ = 61 nodes andP;| = 3 parametemp; of a communication node and each factor node with its
for ¢ = 1,2,...,N, a number ofc ~ 10*° computations must local performance metri¢/; (p.4, ). Accordingly, we label a variable

be done to find the optimal value, which might be computatipna Node corresponding tp; asw (p:) and a factor node corresponding
prohibitive. Alternatively, the centralized technique yrize replaced t0 Mi (p4,;) asv (M;). An edge connecting a factor node( ;)

with the standard alternating-coordinate optimizatiochtéque for With a variable node (px) exists if and only ifk € A;.

dense networks. Such an approach starts with an arbitraigebfp The graph for the problem of a communication network, for the
and iteratively optimizes each element (or a particulansetements) case ofN = 7 communication nodes, can be organized as in Figure 2,
of p one at a time while holding others fixed. Its convergence thich clearly shows the bipartite property of the graph wiahtor

the globally optimum result can be guaranteed under underesonodes connected only to variable nodes through the respestiges

conditions, e.g. convex utility/cost function. [8].
A message-passing algorithm, namely the min-sum algofitbem

then be executed on such a graph [8]. Each message depegdmonl

B. Greedy Solution . . : :
o ) the variable whose associated variable node is a vertexeoédge
Another approach to the optimization problem above is fahea g er which the message is passed along.

communication node to selfishly set its own parameter tonopé
its own local performance based on the most recent choice® ma 2The min-sum algorithm is the variant of sum-product algoritthat is
and given by its neighbors. In this approach, the complexitgach based on the min-sum commutative semi-ring [9].
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More precisely, each message is simply a table of values witpdated messages are equal to the previous computed message
each entry corresponding to one of the possible values ofdtiable. equivalently,
Figure 3 shows the two kind of messages passing on in a fragohen (nt1) () .
a factor graph. The min-sum algorithm, when applied to oobjgm b =P, Vi=L2.N, (16)
at hand, simply iterates between the following two kinds @fssage wheren is an iteration index such that < \.
computations and exchanges [8]: Note that both messages computed in (13) and (14) depend only
1) Factor node to Variable node: on the value of,.. Sincepx € Pi, and Py, is assumed to be discrete
and finite, each of the messages can be represented by aféhig o
entries. In particular, the computation in (14) is just addup the
bt —on(Pk) = mink M; (pa,) + Y by, (95) ¢ corresponding entries of multiple tables of the same sigetter.
Ants JEAN{K} When the factor graph contains no cycle (i.e. a closed pathédn
. . (13) ._graph), it can be shown [3] that the message passing algouig:
where the notatlon\{k:}_means _the underlying op(?rator Sscribed above will yield the exact optimal solution thatiopzes (7)
performed over all assoc[ated vquables except to variableo in a single iteration. However, when it contains cycles tlgo@thm
prevenF messages from increasing endlessly, the MESSBYES| A5 no natural termination and the messages pass multipés Hn
normallzed to have zero mean. the edges of the factor graph in an iterative manner. In thée cthe
2) Veriable node to Factor node: algorithm typically yields good approximations to the troptimal
_ solution [3].
Hpats (Pr) je§{i} at; o (P). o RemarlE g: For cyclic graphs, aspects of message-passing schedul-
ing must be considered in order to ensure convergence. Snthik
which aggregates all the incoming messages at variable nQgg assume the same strategy used in [8].
v (pi) except to the one from factor node(M;).
V. SIMULATION RESULTS

The global performance metric of the precoder selectiomlpro
presented in (7) is investigated in order to evaluate howeftaves
statistically in terms of cumulative distribution funat® (CDFs)
curves. The graph-based technique is compared with theatieatl
solution, which is optimal by definition and the greedy siolnf
which is expected to provide a sub-optimal result. Addiiby the
non-iterative solution, described in Section III-B as theput of the
Fig. 2. Organized factor graph for a communication netwdrk @ommu- first iteration of the greedy technique, as compared wittotitput of
nication nodes with local parameters and local performaneasures. the first iteration of the graph-based method. Moreover5tita CDF
percentile of the sum rate is evaluated to realize how muahegch
distributed technique obtains over the iterations. The Kldbetup
of the N = 7 communication nodes is such that each transmitter
has N; = 2 available transmit antennasy, = 1 data streams
to be transmitted and each receiver iéis = 1 receive antennas,
which provides the set of precoding matrices considereds;Tthe
parameters to be coordinated are 4 PMis for all the cells.sIdal-
to-noise ratio (SNR) is set to 20dB. The parameter init@ion is
at random, i.e. nodes pick one of the PMIs randomly followang
Fig. 3. A factor-graph fragment, showing the message passeba factor uniform distribution at the beginning of each simulatiom i the
node M; and variable nodey. greedy technique. In the graph-based approach, the iniésisages

defined in (14) are equal to zero. The maximum number of iterat

Here, an ideal error-free message pass is considered. lorh w )\ in each simulation run is 100. Finally, a total of 1000 runsrave
mentioning that the initialization with unit messages megd nodes conducted for statistical purposes. These simulationnpeters above
to compute and propagate messages with equal entries. Im suere adopted for the simultaneous message-passing sehéualthe
situation, nodes are not capable of iteratively finding tbstiparam- graph-based technique and other simulation parameters taken
eters as all the entries return the same cost. To circumis)tthe from [8].
initial incoming messages,, -, (px) can be initialized to random  The graph-based technique appears to reach the optimaiosolu
values close to zero. Upon receipt of the message ., (px), €ach provided by the centralized approach in terms of sum rate. In
variable nodev (px) then compute outgoing messagg, —ar, (px)  Figure 4, the graph-based technique approaches the optohdion
to v (M;) for eachi € Aj. Those new messages, -, (px) can in all the simulation runs, reaching the global optimum i08f the
be conveniently normalized to avoid messages increasidiessly. cases. That is, the proposed method provides a near-otahaion.
The parameter for communication nodlis determined at its variable The maximum achievable sum rate is about 38 bits per charsegl u
nodew (p;) by reached by both the centralized and the graph-based tedmidhe
greedy technique reaches about 32 bits per channel use ataste
Figure 4 also shows two additional curves, one regardingthput
of the first iteration of the greedy technique, and anothesitering
the output of the first iteration the graph-based method. fohmer
The algorithm then iterates until a stopping criterion isafeed, either shows that the greedy technique reaches its best respotise \ary
a pre-determined maximum number of iteratidlr when the set of first iteration. The latter indicates the graph-based neettan still
parameters computed in (15) converges to a fixed state,gh#té obtain some gain in sum rate through the iterative process.

Local Performance Metrics
(Factor Nodes)

|

Parameters
(Variable Nodes)

p; = arg min Z MM j—p; (Pz) . (195
pq JEA;
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Fig. 4. Performance analysis of graph-based techniquehferptecoder

selection problem in terms of sum rate in 7-node network.

As expected, the graph-based technique outperforms thedygre

method with a large gain in sum rate. Figure 5 shows the 50tk

CDF percentile of the curves in Figure 4. The graph-basethigoe
reaches the globally optimum within the first 10 iteratiomsl ahe
percentage gain obtained over the greedy technique is dpmately
33% in sum rate at the fifth iteration. Considering the outgiuthe
first iteration, the graph-based approach outperforms teedy with

a percentage gain of about 26% in sum rate. Thus, one may think

that the graph-based approach can provide a better perfoema
terms of sum rate than the non-iterative solution.
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Fig. 5. 50th CDF percentile of sum rate against iteration-mo@de network
showing how much gain the graph-based technique obtains greedy
solution.

VI. CONCLUSIONS

The graph-based method for distributed parameter codidina
considers the impact of nodes decisions on their neighbarodes.

The information (message) exchange is only among neighBah a
technique reaches the (near) optimal solution at cost gétanessage
size compared with the greedy solution. As for the numeriesllilts,

the graph-based technique provides good gains in the glodst
over the greedy solution and, consequently, the non-iterablution
which is referred to as being similar to the output of the filstation
of the greedy technique. It is worthwhile to note that thephraased
approach is totally adaptable to any discrete problem oérpater
coordination and any network size. As future studies, ong thiak
of working on message-passing scheduling with faster agevee
and message exchange with reduced message size.
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