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A Message-passing Approach to Precoder Selection in
Wireless Communication Networks

Igor M. Guerreiro, Dennis Hui, and Charles C. Cavalcante

Abstract— This paper addresses distributed techniques to the problem
of precoder selection in a multi-cell scenario. This proposes an iterative
method based on a message-passing procedure in factor graphs. A
particular example of discrete precoder codebook is considered for
transmission of a single data stream on two transmit antennas. For
more realistic results, the wireless channel is modeled based on mea-
sured data. Evaluations on the potential of such an approachin a
wireless communication network are provided and its performance and
convergence properties are compared with the greedy approach. Also, the
output of the first iteration of the graph-based method is compared with
greedy solution. Simulation results for the precoder selection example
are presented and discussed, which show that the graph-based technique
generally obtains gain in sum rate over the other approachesat the cost
of a larger message size. Besides, the proposed method usually reaches the
global optima in a efficient manner in terms of computationalcomplexity
and signaling load.

Keywords— distributed optimization; message-passing algorithm; fac-
tor graphs; precoder selection.

I. I NTRODUCTION

In a cellular network, there are many occasions in which eachcell
needs to set a parameter value, such as reference signal, transmit
power, beam direction, or scheduled user, in such a way that the
setting is, preferably in a compatible way with the settingsof the
neighboring cells, in order to achieve a certain notion of optimality,
such as maximizing the average system or user throughput, ofthe
entire network [1], [2]. The choice made by one cell on a local
parameter often affects the interference level experienced by its
immediate neighbors and hence their respective choices made on their
local parameters, which in turn would influence the choices made by
their neighbors’ neighbors.

In some cases, such as the transmit power control or precoderse-
lection problems, the parameter is dynamic and requires coordination
to be continually performed. Therefore, a systematic methodology
for coordinating the choices of any parameters across the network is
desired. Moreover, in order to facilitate flexible, dense deployment
of small base-stations in future cellular networks, there is also an
increased interest in methods of performing the coordination of
parameters among neighboring cells in an autonomous and distributed
fashion without a central controller, as any unplanned addition (or
removal) of base-stations can substantially alter the system topology
and thus the preferred settings.

Factor graph and the associated sum-product algorithm havebeen
widely used in probabilistic modeling of the relationship among inter-
dependent (random) variables or parameters. There are numerous
successful applications [3] including, most notably, various fast-
converging algorithms for decoding low-density parity check (LDPC)
codes and turbo codes, generalized Kalman filtering, fast Fourier
transform (FFT), etc. Similar (but different) applications of factor
graphs have also been recently proposed for the problem of fast
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beam coordination among base-stations in [4], [5], [6], [7]. The basic
idea in those works is to model the relationship between the local
parameters to be coordinated among different communication nodes
of a network and their respective performance metrics or costs using
a factor graph [3]. In [4], [5], the belief propagation algorithm is
adopted to solve the downlink transmit beamforming problemin a
multi-cell multiple-input-multiple-output (MIMO) system consider-
ing a one-dimensional cellular model. Moreover, in [6], [7]some
message-passing algorithms (including the sum-product algorithm)
are deployed to coordinate parameters of downlink beamforming in
a distributed manner in a multi-cell single-input-single-output (SISO)
system.

In this work, we propose a method founded on the min-sum
algorithm on factor graphs for the application of precoder selection
in a distributed manner. Different from our work in [8], where the
underlying method was applied to the problems of transmit antenna
selection (TAS) and fixed-beam selection, in this work precoding
matrices are considered to be coordinated. Based on factor graphs, a
variant of the sum-product algorithm [3], namely the min-sum algo-
rithm [9], can then be applied in order for all nodes, throughiterative
message passing with their respective neighbor nodes, to decide upon
the best set of local parameters that can collectively maximize a
global performance metric across the network. The algorithm allows
each communication node to be indecisive of its own decisionuntil
sufficient information about how its decision would affect the overall
network performance is accumulated. The performance of such a
graph-based method along with other distributed methods, e.g. game-
theoretic approach [10], for coordination of discrete parameters in a
wireless communication network are evaluated.

II. SYSTEM MODEL

Consider a communication network withN communication nodes.
A communication node described here represents a pair of base-
station (BS) and its associated user equipment (UE)1 in a multi-
cell MIMO system. Particularly, only downlink transmissions are
considered. Each BS hasNt available transmit antennas and each
UE hasNr receive antennas. Letpi denote a discrete parameter of
the ith communication node, or simply nodei, whose value is drawn
from a finite setPi of |Pi| possible parameter values for that node,
where|Pi| denotes the cardinality ofPi, and let

p ≡
[

p1 p2 · · · pN
]T

be a vector collecting all the parameters in the network, where

pi ∈ Pi, i = 1, 2, . . . , N.

Each nodei is associated with a listNi of proper neighbor nodes
(i.e. excluding nodei) whose choices of parameter values can affect
the local performance of nodei. For convenience, also let

Ai ≡ Ni ∪ {i}
denote the “inclusive” neighbor list or just the neighbor list of node
i. Let pAi

denote the vector of those parameters of nodes inAi,

1For convenience, each item of UE is simply referred to as a UE.
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with its ordering of parameters determined by the sorted indices in
Ai. Associated with each nodei is a performance metric or cost,
denoted byMi (pAi

), which is a function of those parameters in the
neighbor listAi of nodei. Each nodei is assumed to be capable of
communicating with all nodes inAi.

In this work, each parameterpi represent a precoding matrix index
(PMI) for BS i indicating which precoder from a predetermined set
Pi of precoders that BSi should use at a certain radio resource
block to transmit signals. In practical systems, differentUEs may
be scheduled, and thus different precoders may be used, at different
radio resource blocks. In this case, the coordination of precoders may
be performed independently for each individual radio resource block.

The BS i transmits precoded and spatially multiplexed vectorxi

to its associated UEi. The vectorxi is defined as

xi =

√

1

Ns

Wisi,

whereNs is the number of data streams,si is theNs × 1 spatially
multiplexed (SM) symbol vector andWi ∈ W is the Nt × Ns

precoding matrix specified by the parameterpi. Here,W is the finite
set of all precoding matrices available for every communication node
in the network. In order to index the elements ofW, assume an
index setI, which is equivalent toPi for all the communication
nodes. Then, a bijective functionf : Pi ↔ W maps the elements
of Pi onto the elements ofW properly. This work focuses on the
particular case of precoding matricesW for theNt = 2 andNs = 1,
considering complex weighting, case. That is,

W =

{[

1
1

]

,

[

1
−1

]

,

[

1
j

]

,

[

1
−j

]}

, (1)

and
Pi ≡ I = {1, 2, 3, 4} . (2)

The sampled incoming signal vector at the UEi is given as being

yi =
√
giiHiixi +

∑

j∈Ni

√
gjiHjixj + vi , (3)

whereHji denotes the MIMO channel response from BSj to the UE
served by BSi in the downlink,quasi-static over a data block, andvi

is a zero-mean circularly symmetric complex Gaussian (ZMCSCG)
noise vector with covariance matrixNoI. The constantgji is a gain
that corresponds to the path loss of each signal, here modeled in a
simplified way as being

gji =

(

1

dji

)α

, (4)

where the constantα refers to the path loss exponent anddji is the
distance between the transmitterj and the receiveri. The second
term on the right-hand side refers to the interference caused by the
neighboring communication nodes. For each transmitter, the average
transmit power is constant and given by

E
{

‖xi‖2
}

=
1

Ns

tr
(

WW
H
)

= PT , (5)

wherePT is the average transmitted power in units of energy per
signaling period. Also, the symbols are assumed to be uncorrelated,
which means thatE

{

sis
H
i

}

= INs .
The channel response includes both a fast fading component and

a path loss component, the latter determined by the distancebetween
the corresponding BS and UE, according to (4). A basic systemmodel
is therefore needed to compute the relative distances between BS and
UEs for each random drop of UEs in the cell grid considering fixed
BSs’ positioning. For convenience, the log-normal shadowing has
not been modeled in this work. To obtain more realistic results, each
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Fig. 1. Estimated power coupling matrix of 1x2 MIMO channel matrices.

MIMO channel response was drawn from a data setD of measured
channel matrices acquired by Ericsson Research during measurement
campaigns made in Kista neighborhood, in Stockholm, Sweden. The
measurement campaigns were performed using a single BS placed on
the roof of a building and a UE mounted inside a van at a convenient
driving speed (see more details in [11], [12]). A total of 324,000
samples of1×2 channel matrices measured along a particular route of
Kista compounds the setD. For the sake of removing any “original”
large-scale fading effect, each entry of the channel matrices was
previously transformed into a zero-mean and unity-variance variable,
such that

[Hji]1,l =
[Dji]1,l − µD

σD

, (6)

where Dji ∈ D, for l = 1, 2, randomly picked up from setD,
is associated with receiverj and transmitteri, µD and σ2

D are the
mean and the variance of the entries of the matrices inD, andHji is
the transformed MIMO channel matrix also associated with receiver
j and transmitteri. The indexl indexes the element(1, l) of both
matricesDji andHji. Then, the path loss modeled by the parameters
gji is in turn inserted to the matrixHji according to (3). It is worth
noting that each element ofD is randomly chosen only once so that
each pair of receiver and transmitter has a different channel matrix.

Particularly, the resulting channel matrices are characterized by the
presence of only one eigenmode. Such a feature is observed inthe
estimated power coupling matrixΩ [13] of resulting MIMO channel
matrices, which is shown in Figure 1. The matrixΩ shows the spatial
arrangement of scattering objects between the transmitterand the
receiver, where its columns refer to the transmit eigenmodes, the rows
the receive eigenmodes. This matrix characterizes the entire data set
D. Consequently, as all the pairs of receiver and transmitterdraw their
channel matrices fromD, they observe the same spatial correlation.
The motivation to use such a channel model is to provide a suitable
scenario for the beam selection technique, which usually benefits
from the characteristics of spatially-correlated channelmatrices.

III. PARAMETER COORDINATION PROBLEM

Our goal is for each nodei to find, in a distributed fashion, its own
optimal parameterp∗i , which is the corresponding component of the
optimal global parameter vectorp∗ that minimize the total (global)
performance metric given by

M (p) ≡
N
∑

i=1

Mi (pAi
) . (7)



XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

where Mi (pAi
) that represents the negative of the data through-

put [14], [15] of the cell corresponding to BSi. The local performance
metric of nodei, i.e. Mi (pAi

), is measured by

Mi (pAi
) = − log det

(

I+ |gii|R−1
i HiiWiW

H
i H

H
ii

)

, (8)

whereRi, defined herein as

Ri , Rvi
+

∑

j∈Ni

|gji|HjiWjW
H
j H

H
ji , (9)

denotes the covariance matrix of the noise-plus-interference experi-
enced by the UE served by BSi in the downlink given thatRvi

is
the covariance matrix of the noise vectorvi.

Hence, the goal here is to employ a distributed algorithm forthe BS
to negotiate their choices of downlink precoding matrices with their
respective neighbors so that the total data throughput in the network is
maximized. This problem of coordinating parameters can be solved
adopting basically two types of solutions:1) centralized approach,
which yields the optimal global parameter vector; and2) distributed
approaches, which on one hand often provide sub-optimal solutions
through greedy techniques such as non-cooperative games, but on the
other hand can provide near-optimal solutions by using message pass
in factor graph.

A. Centralized Solution

Conceptually, the simplest approach to the optimization problem
described above is to solve it jointly at a central location by direct
computing

pC ≡









pC,1

pC,2

· · ·
pC,N









≡ argmin
p

N
∑

i=1

Mi (pAi
) , (10)

which is an optimal solution to the problem by definition. A major
issue of this approach is its huge computational complexityfor large
network sizeN , as the complexity grows exponentially as the number
of communication nodes increases, along with the inherent high
signaling load (backhaul traffic) between the communication nodes
and a central processing unit.

The computational complexity of the centralized solution is indeed
very high. The minimum (or maximum) value of a cost (utility)
function is usually found throughout all the combinations of the
discrete parameters. The total number of combinations of parameters
c is given by

c =
N
∏

i=1

|Pi| .

For instance, if the network hasN = 61 nodes and|Pi| = 3
for i = 1, 2, . . . , N , a number ofc ≈ 1029 computations must
be done to find the optimal value, which might be computationally
prohibitive. Alternatively, the centralized technique may be replaced
with the standard alternating-coordinate optimization technique for
dense networks. Such an approach starts with an arbitrary choice ofp
and iteratively optimizes each element (or a particular setof elements)
of p one at a time while holding others fixed. Its convergence to
the globally optimum result can be guaranteed under under some
conditions, e.g. convex utility/cost function.

B. Greedy Solution

Another approach to the optimization problem above is for each
communication node to selfishly set its own parameter to optimize
its own local performance based on the most recent choices made
and given by its neighbors. In this approach, the complexityof each

node grows only linearly with the cardinality of the set of parameters
Pi since only the parameters of the node itself is considered inthe
optimization at the node. More precisely, in this approach,the local
parameterpi at each communication node is iteratively chosen as

p
(n+1)
S,i ≡ argmin

pi

Mi (pAi
)
∣

∣

∣

pNi
=p

(n)
S,Ni

(11)

wheren is the iteration index,p(n+1)
S,i denotes the choice ofpi made at

iterationn+1 using this selfish/greedy approach, andp
(n)
S,Ni

denotes
the vector of those parameter choices made by nodes inNi at thenth
iteration. In turn, the parameterp(n)

S,i at each node is exchanged to
its neighboring nodes so that every node obtains its parameter vector
p
(n)
S,Ni

to compute its next parameterp(n+1)
S,i . From a game-theoretic

perspective, the greedy solution may be seen as a non-cooperative
game defined as a pure-strategy Nash equilibrium (NE) [16].

Remark 1: Considering some simplifications, the solution for
precoder selection described in [17] can be seen as a single iteration
of the greedy solution, particularly the first iteration. That is, such
a solution is the first best response reaction in (11), which may be
formulated as

pL,i ≡ argmin
pi

Mi (pAi
)
∣

∣

∣

pNi
=p

(1)
S,Ni

(12)

wherepL,i denotes the choice ofpi based onp(1)
S,Ni

, which corre-
sponds to the vector of those parameter choices made by nodesin
Ni at n = 1 in the greedy approach.

In the following we describe another approach to the problemof
minimizing the global metric in (7) by modeling the communication
nodes and the associated local performance metrics using a factor
graph.

IV. M ESSAGEPASS IN FACTOR GRAPHS

A factor graph is a bipartite graph consisting of a set of variable
nodes and a set of factor nodes. Each variable node represents a
variable and can only be connected to a factor node (but not another
variable node) through an edge, while each factor node represents a
factor which is a function of some of the variables. A factor node is
connected to a variable node if and only if the correspondingfunction
represented by the factor node depends on that variable.

Given a multivariate function, a factor graph expresses themathe-
matical structure of the factorization of such a multivariate function
into several local functions. In our problem at hand, the global perfor-
mance metricM (p) is factorized into a sum ofN local performance
metricsMi (pAi

), which is described in (7) [8]. Specifically, for the
problem formulated above, we associate each variable node with the
parameterpi of a communication node and each factor node with its
local performance metricMi (pAi

). Accordingly, we label a variable
node corresponding topi asv (pi) and a factor node corresponding
to Mi (pAi

) as v (Mi). An edge connecting a factor nodev (Mi)
with a variable nodev (pk) exists if and only ifk ∈ Ai.

The graph for the problem of a communication network, for the
case ofN = 7 communication nodes, can be organized as in Figure 2,
which clearly shows the bipartite property of the graph withfactor
nodes connected only to variable nodes through the respective edges
[8].

A message-passing algorithm, namely the min-sum algorithm2, can
then be executed on such a graph [8]. Each message depends only on
the variable whose associated variable node is a vertex of the edge
over which the message is passed along.

2The min-sum algorithm is the variant of sum-product algorithm that is
based on the min-sum commutative semi-ring [9].
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More precisely, each message is simply a table of values with
each entry corresponding to one of the possible values of thevariable.
Figure 3 shows the two kind of messages passing on in a fragment of
a factor graph. The min-sum algorithm, when applied to our problem
at hand, simply iterates between the following two kinds of message
computations and exchanges [8]:

1) Factor node to Variable node:

µMi→pk(pk) = min
pAi\{k}







Mi (pAi
) +

∑

j∈Ai\{k}

µpj→Mi
(pj)







,

(13)
where the notation\{k} means the underlying operator is
performed over all associated variables except to variablek. To
prevent messages from increasing endlessly, the messages are
normalized to have zero mean.

2) Variable node to Factor node:

µpk→Mi
(pk) =

∑

j∈Ak\{i}

µMj→pk (pk) , (14)

which aggregates all the incoming messages at variable node
v (pk) except to the one from factor nodev (Mi).

M7M4 M6

P2P1 P7P6P4

M1 M2 M3

P3

M5

P5

Local Performance Metrics

(Factor Nodes)

Parameters

(Variable Nodes)

Fig. 2. Organized factor graph for a communication network of 7 commu-
nication nodes with local parameters and local performancemeasures.

Fig. 3. A factor-graph fragment, showing the message pass between factor
nodeMi and variable nodepk.

Here, an ideal error-free message pass is considered. It is worth
mentioning that the initialization with unit messages may lead nodes
to compute and propagate messages with equal entries. In such
situation, nodes are not capable of iteratively finding the best param-
eters as all the entries return the same cost. To circumvent this, the
initial incoming messagesµpk→Mi

(pk) can be initialized to random
values close to zero. Upon receipt of the messageµMi→pk (pk), each
variable nodev (pk) then compute outgoing messageµpk→Mi

(pk)
to v (Mi) for eachi ∈ Ak. Those new messagesµpk→Mi

(pk) can
be conveniently normalized to avoid messages increasing endlessly.
The parameter for communication nodei is determined at its variable
nodev (pi) by

p
∗
i = argmin

pi







∑

j∈Ai

µMj→pi (pi)







. (15)

The algorithm then iterates until a stopping criterion is reached, either
a pre-determined maximum number of iterationλ or when the set of
parameters computed in (15) converges to a fixed state, that is, the

updated messages are equal to the previous computed messages, or
equivalently,

p
(n+1)
i = p

(n)
i , ∀i = 1, 2, . . . , N , (16)

wheren is an iteration index such thatn ≤ λ.
Note that both messages computed in (13) and (14) depend only

on the value ofpk. Sincepk ∈ Pk andPk is assumed to be discrete
and finite, each of the messages can be represented by a table of |Pk|
entries. In particular, the computation in (14) is just adding up the
corresponding entries of multiple tables of the same size together.

When the factor graph contains no cycle (i.e. a closed path inthe
graph), it can be shown [3] that the message passing algorithm de-
scribed above will yield the exact optimal solution that optimizes (7)
in a single iteration. However, when it contains cycles the algorithm
has no natural termination and the messages pass multiple times on
the edges of the factor graph in an iterative manner. In this case, the
algorithm typically yields good approximations to the trueoptimal
solution [3].

Remark 2: For cyclic graphs, aspects of message-passing schedul-
ing must be considered in order to ensure convergence. In this work
we assume the same strategy used in [8].

V. SIMULATION RESULTS

The global performance metric of the precoder selection problem
presented in (7) is investigated in order to evaluate how it behaves
statistically in terms of cumulative distribution functions (CDFs)
curves. The graph-based technique is compared with the centralized
solution, which is optimal by definition and the greedy solution,
which is expected to provide a sub-optimal result. Additionally, the
non-iterative solution, described in Section III-B as the output of the
first iteration of the greedy technique, as compared with theoutput of
the first iteration of the graph-based method. Moreover, the50th CDF
percentile of the sum rate is evaluated to realize how much gain each
distributed technique obtains over the iterations. The MIMO setup
of the N = 7 communication nodes is such that each transmitter
has Nt = 2 available transmit antennas,Ns = 1 data streams
to be transmitted and each receiver hasNr = 1 receive antennas,
which provides the set of precoding matrices considered. Thus, the
parameters to be coordinated are 4 PMIs for all the cells. Thesignal-
to-noise ratio (SNR) is set to 20dB. The parameter initialization is
at random, i.e. nodes pick one of the PMIs randomly followinga
uniform distribution at the beginning of each simulation run in the
greedy technique. In the graph-based approach, the initialmessages
defined in (14) are equal to zero. The maximum number of iterations
λ in each simulation run is 100. Finally, a total of 1000 runs were
conducted for statistical purposes. These simulation parameters above
were adopted for the simultaneous message-passing scheduler in the
graph-based technique and other simulation parameters were taken
from [8].

The graph-based technique appears to reach the optimal solution
provided by the centralized approach in terms of sum rate. In
Figure 4, the graph-based technique approaches the optimalsolution
in all the simulation runs, reaching the global optimum in 98% of the
cases. That is, the proposed method provides a near-optimalsolution.
The maximum achievable sum rate is about 38 bits per channel use,
reached by both the centralized and the graph-based techniques. The
greedy technique reaches about 32 bits per channel use at themost.
Figure 4 also shows two additional curves, one regarding theoutput
of the first iteration of the greedy technique, and another considering
the output of the first iteration the graph-based method. Theformer
shows that the greedy technique reaches its best response atthe very
first iteration. The latter indicates the graph-based method can still
obtain some gain in sum rate through the iterative process.
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Fig. 4. Performance analysis of graph-based technique for the precoder
selection problem in terms of sum rate in 7-node network.

As expected, the graph-based technique outperforms the greedy
method with a large gain in sum rate. Figure 5 shows the 50th
CDF percentile of the curves in Figure 4. The graph-based technique
reaches the globally optimum within the first 10 iterations and the
percentage gain obtained over the greedy technique is approximately
33% in sum rate at the fifth iteration. Considering the outputat the
first iteration, the graph-based approach outperforms the greedy with
a percentage gain of about 26% in sum rate. Thus, one may think
that the graph-based approach can provide a better performance in
terms of sum rate than the non-iterative solution.
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Fig. 5. 50th CDF percentile of sum rate against iteration in 7-node network
showing how much gain the graph-based technique obtains over greedy
solution.

VI. CONCLUSIONS

The graph-based method for distributed parameter coordination
considers the impact of nodes decisions on their neighboring nodes.

The information (message) exchange is only among neighbors. Such a
technique reaches the (near) optimal solution at cost of larger message
size compared with the greedy solution. As for the numericalresults,

the graph-based technique provides good gains in the globalcost
over the greedy solution and, consequently, the non-iterative solution
which is referred to as being similar to the output of the firstiteration
of the greedy technique. It is worthwhile to note that the graph-based
approach is totally adaptable to any discrete problem of parameter
coordination and any network size. As future studies, one may think
of working on message-passing scheduling with faster convergence
and message exchange with reduced message size.
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