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WiFi Multifloor Indoor DCM Positioning
Rafael Saraiva Campos, Lisandro Lovisolo and Marcello L. R. de Campos

Abstract— Database correlation methods (DCM) are used to
locate mobile stations (MS’s) in wireless networks. A target radio-
frequency (RF) fingerprint - measured by the MS to be localized
- is compared with georeferenced RF fingerprints, previously
stored in a correlation database (CDB). This paper focuses
on the DCM positioning in multifloor indoor environments. In
this scenario, the authors apply two combined techniques to
reduce the search space inside the CDB, while improving the
floor identification accuracy: i) unsupervised clustering using a
single Kohonen Layer and ii) floor classification using commit-
tees of backpropagation artificial neural networks (ANN’s), one
committee per each floor. The effects of the proposed solution
on the DCM positioning accuracy are experimentally evaluated
using 46200 target fingerprints and a CDB with 924 reference
fingerprints, containing Received Signal Strength (RSS) values of
136 WiFi 802.11b/g networks in a 12-floor building. The correct
floor is identified in 91% of the samples, and is within 2 floors in
99% of the samples. The average positioning error is 4.7 meters
and is below 5.5 meters in 75% of the samples.

Keywords— Mobile Stations, WiFi Networks, Indoor Position-
ing, Radio-frequency Fingerprint, Kohonen Layer, Backpropaga-
tion.

I. INTRODUCTION

There is a growing number of MS’s equipped with built-

in Global Positioning System (GPS) receivers. In open areas,

GPS yields the highest location precision, but is usually

unavailable in indoor environments. In this scenario, RSS

based location techniques are used both in cellular and WiFi

networks. However, in such environments, positioning using

WiFi RSS values yields higher precision, due to the usually

higher density of WiFi access points (AP’s) in a indoor

environment, in relation to cellular micro or even picocells.

RSS based DCM is a viable alternative for indoor WiFi

positioning [1]. There is a wide variety of DCM solutions in

the literature, but all share the same basic elements [2]. One of

these elements is the CDB search space reduction technique,

which has an impact both on the method’s computational

complexity and on the positioning precision. In this paper,

two techniques are combined to reduce the search space within

the CDB, while improving the correct floor identification ac-

curacy: unsupervised clustering using a single Kohonen layer

and floor classification using committees of backpropagation

ANN’s.

The remainder of this work is organized as follows: Sec-

tion II introduces the basic elements of DCM; Section III

provides a diagram of the proposed solution; Section IV

describes the unsupervised clustering technique; Section V

describes the floor classification procedure; Section VI details
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the experimental evaluation; and Section VII brings a brief

conclusion.

II. DATABASE CORRELATION METHODS

DCM, also known as RF fingerprinting positioning, is a

class of MS positioning methods that can be applied in any

wireless network. Even though there is a wide variety of such

methods, all present the same basic elements: RF fingerprints,

a CDB, techniques to reduce the search space within the CDB,

and the correlation of RF fingerprints.

A. RF Fingerprint

A RF fingerprint is a set of RF signal parameters. Those

parameters are measured by the MS or by its anchor cells.

Just like a human fingerprint, which carries the unique identi-

fication of a person, a RF fingerprint is expected to uniquely

identify a geographic position.

A RF fingerprint can be classified as either a target (TFing)

or reference (RFing) fingerprint. A TFing is the RF fingerprint

associated with the MS which is to be localized, i.e., it

contains signal parameters measured by the MS or by its

anchor cells. The RFing’s are the RF fingerprints collected

or generated during the training phase and stored in the

CDB. Each RFing is associated with a 3-uple of geographic

coordinates (x, y, z). The fingerprint structure used in this

work, common to both RFing’s and TFing’s, is defined by

the vector ~F = [RSS1 . . .RSSN ], where N is a constant which

informs the number of WiFi 802.11b/g networks used in the

position fix.

B. Correlation Database

The CDB is the set of RFing’s. The CDB is built during

the DCM training phase [3], using radio propagation modeling,

field measurements or a combination of both [4]. Each CDB

entry is described by
(

~F , x, y, z
)

, where ~F is the RFing

associated to the point defined by coordinates (x, y, z).

C. Techniques to Reduce the Search Space within the CDB

The search space or correlation space is a subset of the

RFing’s stored in the CDB. The RFing’s in this subset are

compared to the TFing to locate the MS. The geographic

coordinates associated with the RFing’s in the search space are

candidate solutions for the MS positioning problem. The CDB

might be quite large and analyzing all RF fingerprints stored in

it might be very time consuming. Therefore, all fingerprinting

location techniques apply some method to reduce the search

space within the CDB. As a consequence, the time required to

produce a position fix is also reduced. Some of the techniques
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applied in the literature are deterministic filtering [5] and opti-

mized search using genetic algorithms [6], both applied upon

RSS maps built with empirical propagation models [7]. In [8],

the search space is reduced by clustering the measurement

points, i.e, the candidate solutions. This clustering is based on

the identity of the q WiFi networks with the highest RSS at

each measurement point.

D. Correlation of RF Fingerprints

The MS is assumed to be located at the point whose

RFing has the highest correlation or similarity with the TFing.

Comparison of the TFing and RFing’s can be carried out by

calculating the distance between these fingerprints in the N -

dimensional RSS space. If C is the set of RFing’s in the CDB

and D is the set of RFing’s in the search space, then D ⊆ C.

Let ~F be the TFing measured by the MS to be localized. The

RFing ~Fk most similar to ~F is given by:

k=argmax

i

[

−(~F−~Fi)( ~F−~Fi)
T
]

, ∀~Fi ∈ D
(1)

The MS estimated position is given by the coordinates

associated with ~Fk, obtained from the 4-uple
(

~Fk, x, y, z
)

stored in the CDB.

III. DIAGRAM OF THE PROPOSED SOLUTION

Fig. 1 shows a diagram of the proposed solution, in the

post-training phase or on-line phase. Initially, the TFing is

transported to the principal components subspace, through

principal components analysis (PCA) (step 1). Then, it is

presented to both the Kohonen Layer and the committees

of backpropagation ANN’s (step 2). The Kohonen Layer

identifies the cluster which the TFing belongs to. The com-

mittees of backpropagation ANN’s identify the floor where

the TFing was collected. The reduced search space will be

given by the RFing’s present both in the current floor and

the current cluster (step 3). Then, in the N -dimensional RSS

space, the TFing is compared to all the RFing’s within the

reduced search space (step 4). Finally, the process returns the

coordinates (x, y, z) of the measurement point containing the

RFing with the highest similarity with the TFing (step 5).

IV. UNSUPERVISED CLUSTERING USING A SINGLE

KOHONEN LAYER

Due to the inherent complexity of the RF channel, it is

not possible to know beforehand how the RFing’s - and

consequently the measurement points where they were col-

lected - will cluster. Under certain propagation conditions,

measurement points far away from each other in the Euclidean

three-dimensional space might have RF fingerprints which are

close together in the N -dimensional RSS space (or the M -

dimensional principal components subspace, where M < N ).

Therefore, for instance, it is not possible to ascertain that

measurement points in the same floor will belong to the

same cluster. So, there are no predefined targets during the

training phase, and it is up to the classifier to identify, without

Fig. 1. Diagram of the Proposed Solution.

supervision, how the RFing’s will cluster together. Note that,

as each RFing’s is georeferenced, i.e., is associated with a

measurement point with known coordinates, by grouping the

RFing’s in the N -dimensional RSS space, the classifier is

indirectly grouping the measurement points in the Euclidean

three-dimensional space [9].
The Kohonen layer used in this work is one-dimensional

with a neighbor radius equal to zero, which means that only
the winner neuron is activated. This classifier has an input
layer and a competitive layer, as shown in Fig. 2. For each

input vector ~X = [X1 X2 . . . XN ], the winner neuron at the

competitive layer is that whose synapse ~Wi is the most similar

to the input vector ~X . The output of the winner neuron is
activated (yi=1), while the outputs of all other neurons remain
equal to zero (yj=0, ∀j 6= i) [10]. The similarity measure used
was:

ui = −

[

wi,0 +
(

~X − ~Wi

) (

~X − ~Wi

)T
]

,∀i ∈ [1, 2, . . . , Nc] (2)

where wi,0 is the i-th neuron conscience bias, which is defined

by Eq. (4), and Nc is the number of neurons in the Kohonen

layer.

The initialization of the synaptic weights is critical for

the algorithm convergence. The technique used for the ini-

tialization is described in Section VI. In order to distributed

the training approximately evenly among all neurons in the

competitive layer, conscience is used [11]. With conscience,

neurons which are constantly winning receive a progressively

decreasing negative bias. This allows less trained neurons to

become more similar to the input vectors. With the conscience

mechanism, neurons in the Kohonen layer naturally represent

approximately equal amount of information [12]. Individual

decreasing learning steps per neuron are also used [10].

V. FLOOR CLASSIFICATION USING COMMITTEES OF

BACKPROPAGATION ANN’S

The Kohonen Layer is used to cluster the target RF finger-

prints in a unsupervised manner. After training, each neuron in

the Kohonen layer maps one cluster within the CDB. However,

a cluster might span several floors, as shown in Fig. 3, and, in

multifloor indoor positioning, it is very important to correctly
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Fig. 2. ANN with one competitive layer.

identify the floor were the MS is located, before estimating

the MS 2D position within that floor. So, after selecting the

cluster using the Kohonen Layer, the proposed solution uses

committees of backpropagation ANN’s to identify the floor

where the MS might be located, within the selected cluster.
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Fig. 3. Examples of clusters defined by the Kohonen Layer in [9]

Each one of the F floors has a committee with Na

backpropagation ANN’s. Each ANN was trained as a binary

classifier, identifying if a given RF fingerprint belongs to the

current floor or not. Each classifier is identified by gn,f , where

n ∈ [1, . . . , Na] and f ∈ [1, . . . , F ]. At each floor, the outputs

of the single classifiers are combined into a unique joint voting

classifier gvf , whose output is the class the majority of the

single classifiers voted for. The output of the joint voting

classifier is expected to have a lower variance than the outputs

of the single binary classifiers [13].

VI. EXPERIMENTAL EVALUATION

A. Experiment Setup

The WiFi RSS measurement campaign was carried out in

the 12 floors of Principal Joao Lyra Filho Pavilion at the

University of Rio de Janeiro State (UERJ). The software

used to collect the WiFi scans was NetStumbler version 0.4,

which was run in a Toshiba A75-S211 laptop with a Atheros

AR5005GS built-in 802.11b/g adapter. NetStumbler forces the

WiFi adapter to carry out a passive scan of 802.11 networks,

i.e., without sending probe requests. During the passive scan,

the WiFi adapter remains a certain time period on each

channel, waiting to receive a beacon. The beacon, which is

sent by every WiFi access point (AP), contains the network

identifier (SSID - Service Set ID) and the AP MAC (Medium

Access Control) address. For each detected AP, NetStumbler

stores the MAC, SSID, carrier number, noise level and signal-

to-noise ratio. The laptop was placed over a wheeled table,

and at each of the 924 measurement points the WiFi adapter

collected between 180 and 240 WiFi scans, at a rate of one

per second. Each WiFi scan contains data from several AP’s.

Fig. 4 shows a perspective spatial view of the measurement

points positions in the UERJ main building.
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Fig. 4. Measurement points at UERJ building.

Each measurement point is identified by a unique RFing

containing the mean RSS values of each detected WiFi net-

work. At each measurement point, the mean RSS values per

WiFi network are calculated using all WiFi scans carried out in

that particular point. If a WiFi network is detected in less than

10% of the WiFi scans at a given point, its mean RSS value is

assumed to be zero. A total of N = 136 WiFi networks were

detected, resulting in a training set matrix of size 924× 136.

The first 50 WiFi scans at each measurement point were

used as input vectors of the test set. Considering all measure-

ment points, a total of 924× 50 WiFi scans was selected for

the test set, resulting in a test set matrix of size 46200× 136.

Prior to presenting the RFing’s to the classifier, the RSS

values were converted to the logarithmic scale in order to

compress them to the numerical range −120 to −30 dBm.

Then, as shown in Fig. 1, PCA was applied to reduce the

input vectors dimension. PCA generates a new set of mutu-

ally orthogonal variables called principal components (PC’s).

Firstly, the training set, with M input vectors, is translated

by extracting the sample mean at each dimension, obtaining

matrix B =
[

vi,j − V̄j

]

i=1,...,M ;j=1,...,N
, where vi,j is the j-

th WiFi network RSS value at the i-th scan, and V̄j is j-th

network RSS sample mean. Let ~Uj be the j-th eigenvector of

the covariance matrix of B. The PC’s matrix of the training

set is given by PM×N = B ·
[

~Uj

]

j=1,...,N
.

The columns in P are sorted in decreasing variance order,
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each one corresponding to a PC. To reduce the training patterns

dimension, only the first p PC’s are held. In this paper, p was

selected so that at least 99% of the training set total variance

was preserved, resulting in p = 78.

The sample means and the matrix
[

~Uj

]

j=1,...,N
, obtained

during application of PCA to the training set, are also used to

project each test set vector into the PC’s subspace. Just like

in the training set, only the first p PC’s are held.

B. Training the Single Kohonen Layer

The Kohonen Layer synaptic weights are defined in the PC’s

subspace. So, there is a Nc × p matrix of synaptic weights,

where Nc is the number of clusters and p is the number of

PC’s that are kept (p = 78). The theoretical optimum value of

Nc, as a function of Np, is calculated in [9]. For Np = 924,

one has Nc = 30.

For the initialization of the synaptic weights in the PC’s

subspace, the maximum variance dimension (the first PC) has

been divided into Nc equal length sections. In each section,

a input vector whose first PC value is equal to the section

median is selected. The selected input vectors are the initial

values for the Nc neurons synaptic weights [14].

During the Kohonen layer training, individual decreasing

learning steps per synapse were used, as defined by:

αi (n) = α0 exp (−n/N0) (3)

where αi (n) is the i-th synapse learning step at instant n,

α0 = 0.45 e N0 = 120.

Conscience was used in the training phase. Conscience is

implemented by adding a negative bias to the neuron similarity

function, which was defined by Eq. (2. The negative bias is

given by:

wi,0 = φ2 {0.5 [1− tanh (k (pi − p∗))]− 1} (4)

where φ is equal to the diameter of the single class (i.e.,

assuming that all vectors belong to only one class and finding

the highest distance between any pair of input vectors) in the

PC’s subspace, k = 4.5, pi is the percentage of times the i-th
neuron is trained (number of times the neuron was trained

or won over the number of input vectors presented to the

classifier) and p∗ = 1/Nc.

At each training epoch, all 924 training patterns are pre-

sented to the Kohonen layer. The training continues until a

maximum number of epochs has been reached (20 epochs), or

when the maximum variation of the synaptic weights between

two consecutive epochs is below a certain threshold (0.0001).

C. Training the Committees of Backpropagation ANN’s

Each floor has a joint majority voting classifier composed

by a committee of Na = 13 ANN’s. So, there are 12
committees (one per floor) and 156 single binary classifiers.

All ANN’s have the same topology, with p = 78 inputs,

q = 10 neurons in the hidden layer and 1 neuron in the output

layer. The activation function of all neurons is the hyperbolic

tangent. The training method is Levenberg-Marquardt [15],

with mean square error (MSE) as the performance function.

The optimum size of the hidden layer was determined by

increasing the number of neurons during the training phase,

until no further relevant reduction in the MSE was detected.

Training was carried out in MATLAB. The training contin-

ues until one of the following conditions is met: i) a maximum

number of epochs is reached (50 epochs); ii) a goal is met for

the MSE (equal to or below 0.01); iii) a maximum of number

consecutive validation fails occur (6 fails).

Of the total Nt = 924 TFing’s in the CDB, Nf belong to

the f -th floor, and (Nt −Nf) belong to other floors. As there

are 12 floors, Nf < (Nt −Nf). So, to prevent biasing the

training of the classifiers in the committee gvf , the TFing’s be-

longing to the f -th floor are repeated ⌊log2 [(Nt −Nf) /Nf ]⌋
times. So, the number of TFing’s in gvf that belong to the f -th

floor will be approximately the same of the remainder TFing’s

in the CDB. Therefore, each committee has a different training

set.

Validation vectors are used to prevent overtraining [10].

They stop training early if the network performance on the

validation vectors fails to improve or remains the same for a

maximum number of consecutive epochs. Within the training

set of each ANN, 10% of the TFing’s are randomly selected

for the validation set. Therefore, not only each committee

has a different training set, but also each ANN within each

committee.

The output of each ANN is within the range [−1,+1]. Each

committee will consider that a classifier has voted 1 (TFing’s

belong to the current floor) if its output is positive, and 0 if

otherwise. If two or more committees have voted 1 (a TFing

cannot belong to more than one floor) , the committee with

the highest cumulative value for the positive outputs of its

classifiers wins.

D. Experiment Results

Fig. 5 shows the experimental Cumulative Distribution

Function (CDF) of the positioning error of the following

methods: (I) pure DCM; (II) DCM with ANN’s committees;

(III) DCM with Kohonen Layer; (IV) DCM with Kohonen

Layer and ANN’s committees. It can be seen that, methods

(I) and (II) have approximately the same error distribution, as

well as methods (III) and (IV).

Table I shows that, while the use of ANN’s commit-

tees (method II) has increased the floor identification accuracy

from 78% to 91% in relation to pure DCM (method I), its has

not significantly improved the positioning error. However, the

use of Kohonen Layer (method III) has reduced the average

error by almost 40% in relation to pure DCM (method I). By

combining the two techniques (method IV), both benefits are

present: increased floor identification accuracy (up 13% in re-

lation to pure DCM) and higher positioning accuracy (average

error down 40.5% in relation to pure DCM).

The floor estimated by the proposed method (method IV)

is within two floors of the correct floor in 99% of the cases,

against 97% of the cases in pure DCM (method I).

E. Comparison with Published Results

There is a wide list of papers about RF indoor positioning

problem, but, surprisingly, the authors have found only a few
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Fig. 5. Positioning Error CDF.

TABLE I

DCM POSITIONING ERROR IN METERS AND FLOOR IDENTIFICATION

ACCURACY.

Method Avg 75th 90th Floor

Error Percentile Percentile Id. Accuracy

I 7.9 9.0 28.0 78%

II 7.1 7.2 26.0 91%

III 5.0 6.0 16.0 84%

IV 4.7 5.5 15.0 91%

addressing multifloor scenarios [16] [17] [18] [19].

In [16], a Global System for Mobile Communica-

tions (GSM) fingerprinting indoor localization system for

multifloor positioning was proposed, achieving a 73% floor

identification accuracy. The estimated floor was within two

floors of the correct floor in 97% of the cases. The system has

been tested in three tall buildings (9, 12 and 16 floors) and

the number of fingerprints collected per floor ranged from 30
to 130.

In [17], the authors collected RSS measurements in 30
points, 21 at the first floor and 9 at the second floor. In [18], a

single-phase location determination system (no training phase)

was proposed and tested, also in a two-store building. As

the buildings had only two floors, the multifloor effect in the

positioning error was diminished.

In [19], the authors proposed a solution that combined

trilateration and scene analysis method, reporting a 100%

floor identification accuracy. However, in the 8 floor building

where the method was tested, only 57% RF fingerprints were

collected.

In [20], the positioning error for the 75th percentile was 4.7
meters when the TFing’s were built using mean RSS values

of 20 samples per measurement point. When just one sample

was used per TFing (as in this work), the positioning error

for this same percentile rose to 6.1 meters. This precision is

approximately the same achieved by Method IV, as shown in

Table I.

VII. CONCLUSION

In this work, the authors proposed the use of two com-

bined techniques to improve DCM positioning error in WiFi

networks in multifloor indoor environments: a single Kohonen

Layer, to cluster the RF fingerprints in the CDB and reduce the

search space, and committees of backpropagation ANN’s, to

further reduce the search space and improve floor identification

accuracy. The proposed combined techniques achieved 91%

floor identification accuracy and 4.7 meters average position-

ing error.
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[15] J. J. Moré, “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Lecture Notes in Mathematics, , no. 630, pp. 105–116, 1977.

[16] A. Varshavsky et al, “The SkyLoc Floor Locatization System,” in
Proceedings of the Fifth Annual IEEE International Conference on

Pervasive Computing and Communications (PerCom’07), White Plains,
USA, March 2007, pp. 125–134.

[17] A. S. Al-Ahmadi et al, “Multi-Floor Indoor Positioning System using
Bayesian Graphical Models,” Progress In Electromagnetics Research B,
vol. 25, pp. 241–259, 2010.

[18] A. S. Al-Ahmadi et al, “Single-Phase Wireless LAN Based Multi-Floor
Indoor Location Determination System,” in Proceedings of IEEE 17th

International Conference on Parallel and Distributed Systems (ICPADS),
Tainan, Taiwan, December 2011, pp. 1057–1062.

[19] H. H. Liu and Y. Yang, “WiFi-Based Indoor Positioning for Multi-Floor
Environment,” in Proceedings of 2011 IEEE Region 10 Conference

(TENCON 2011), Bali, Indonesia, November 2011, pp. 597–601.
[20] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-based

User Location and Tracking System,” in Proceedings of 19th Annual

Joint Conference of the IEEE Computer and Communications Societies,
Tel Aviv, Israel, March 2000, pp. 775–784.


