
XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

M2M Protocols for Constrained Environments in the
Context of IoT: A Comparison of Approaches

Edielson P. Frigieri, Daniel Mazzer and Luís F. C. G. Parreira

Abstract— The Internet of Things movement opens new

possibilities for services and business along with new

technological challenges, such as power efficiency, operation in

constrained environments, security, and privacy. With the

expectation of a high amount of devices connected in this Future

Internet, scalability is also assumed to be a challenge. To address

these limitations, several protocols are being proposed. In this

paper, two of them, MQTT and COAP, are presented and

qualitatively compared, summarizing their main features and

limitations, highlighting the best scenarios where each approach

is more suitable.

Keywords— Constrained, Internet of Things, Machine-to-

Machine, Security, Scalability.

I. INTRODUÇÃO

The possibility of connecting people and smart objects
through a common infrastructure – the Internet, has been the
focus of many recent researches on Information and
Communications Technologies (ICT). This new approach is
named Internet of Things (IoT) and the main idea refers to an
unified network for interconnecting people and any kind of
thing, which can be a real or virtual objects, e.g. a hardware
device or a web service [1].

The IoT scenario uses the Internet for conducting
information exchange and communication aiming at achieving
different kinds of services, like monitoring, tracking,
positioning, and smart recognitions. Along with the new
possibilities appear new challenges like power efficiency,
operability in constrained environments (devices, bandwidths,
networks, etc.) and concerns about security and privacy [2]. If
this new technology doesn’t guarantee the safety of private
information, users will be averse to adopt it to their
environment and life [3].

Since this technology shift is expected to be greater than the
one caused by the advent of mobile phones, serious scalability
problems can be highlighted in the context of standardized
machine-to-machine (M2M) protocols while facilitating
human-machine interaction [4]. Many protocols have been
designed for unconstrained environments, where the number
of devices is limited to hundreds or thousands. However, IoT
scenarios present very constrained environments with millions
or even billions of devices which are motivating the design of
new protocols, focused on networking/computing constrained
environments which demand only a few transfers of bytes per
day and should run on battery powered devices for years.

In order to choose the best protocol, a careful analysis

should be done on the target application, as well as on the
protocol features and requirements.

Following these tendencies, this work aims to present,
analyze qualitatively and discuss some of the M2M proposed
protocols, identifying their main features and limitations and
highlighting the best scenarios where each one can be applied.

For this aim, the remaining of this paper is organized as
follows: Section II presents some M2M protocols for Internet
of Things scenarios; Section III discusses them, summarizing
their main features and limitations; finally, the Section IV
draws the paper conclusions.

II. M2M PPROTOCOLS FOR INTERNET OF THINGS

There are several protocols proposed for M2M
communication with focus on constrained environments. The
great majority of IoT and M2M protocols are IP based,
making use of already available networks like Wi-Fi, Ethernet,
6LoWPAN and mobile. Among them, MQTT (Message

Queue Telemetry Transport) [5] and CoAP (Constrained

Application Protocol) [6] are frequently adopted. They have
been analyzed for different perspectives [7] and are popular
among commercial products with high availability of
commercial web services, and caught the interest of the open
source community [8]. The advantage of using open protocol
is that the developer may focus on application business,
leaving the message delivery on charge of the protocol. Also,
these protocols are suitable for use on low memory hardware
and low processing power microcontrollers [9].

A. MQTT

Created by IBM and Eurotech, the MQTT is an open
protocol designed to be simple, lightweight, and easy to
implement: suitable features for embedded devices with
limited battery, processor and/or memory resources. The small
transport overhead (fixed-length header of 2 bytes) makes the
MQTT an interesting solution for unreliable networks with
restricted resources, such as low bandwidth and high-latency
[5]. This protocol is based on a lightweight broker using
publish/subscribe message pattern where the broker server acts
as an intermediary for messages sent from a publisher client to
subscriber clients, providing one-to-many message
distribution and decoupling of use case application. All
messages addressed to a specific topic, sent by publisher, will
be delivered, by the broker server, to the subscribers of this

Edielson Prevato Frigieri, Daniel Mazzer and Luís F. C. G. Parreira¸ Department
of Computer Engineering, Instituto Nacional de Telecomunicações, Santa Rita do
Sapucaí-MG, Brazil, E-mails: edielson@inatel.br, daniel.mazzer@inatel.br, and
lfgambogi@gmail.com.

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

topic1. Some important features can be highlighted as: Keep-

Alive message (PINGREQ, PINGRESP) where broker can
detect client disconnection even when it doesn’t send explicit
DISCONNECT messages; the Retain message where a
PUBLISH message on a specific topic can be retained in the
broker allowing a new connected subscriber, on the same
topic, to receive it; Last Will message (specified in
CONNECT message with topic, QoS, and retain) allows
subscribed clients being informed about an unexpected client
disconnection; Durable subscription that keeps all
subscriptions retained in the broker when a client is
disconnected, and allows them to be recovered on client
reconnection.

These MQTT features and characteristics driven its
application to solutions where low battery consumption is a
pre-requirement and where there is low bandwidth available or
intermittent connection [10], which characterizes the first
layer in a sensor network application.

A new standard version for MQTT called MQTT-SN, with
focus on sensor networks, was developed for running in
different networks than TCP/IP, like UDP, 6LoWPAN2,
customized serial protocols, and customized radio frequency
protocols as the IEEE standard 802.15.4. One of the main
differences about the two standards, besides the network layer
they are focused on, is the simplification in the messages
exchanged among broker and clients, using “pre-defined”
topic identifiers and short topic names in addition to small
messages format [11]. As MQTT-SN is not fully
standardized, different implementations may not be
compatible each other.

B. CoAP

The CoAP protocol was designed by the Constrained
RESTful Environments (CoRE) Working Group of Internet
Engineering Task Force (IETF). Adapted from HTTP, it was
optimized for devices with constrained power and processing
capabilities usually applied to smart objects in the IoT
environment [6]. Running over UDP transport protocol, CoAP
specifies a minimal subset of REST requests including POST,
GET, PUT, and DELETE, supporting resource caching and
built-in resource discovery.

CoAP adopts a request/response model, where each device
acts as “client” or “server” and the resources can be accessed
by URIs. Different from HTTP, the connection is not
established before message exchanging. The communication
happens in an asynchronous way. There are four types of
messages: CON (Confirmable), NON (Non-Confirmable),
ACK (Acknowledgment), and RESET.

In comparison to the HTTP, CoAP is more cost-effective
because it performs less data exchange between client and
server, resulting in lower power consumption when using
cheaper equipment in both sides of the connection [12]. In
summary, its key characteristics can be outlined as: compact
binary header in combination with the UDP based transport

1 Every MQTT message includes a topic that classifies it. MQTT brokers

use topics to determine which subscribers should receive messages published
to the broker.

2 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks):
encapsulation and header compression mechanisms that allow IPv6 packets to
be sent to and received from over IEEE 802.15.4 based networks;

that reduces the overhead data and consequently decreases the
delay and minimizes battery usage during transmission;
support for the asynchronous information push (observe
option) that allows smart objects to send resource information
only when there is a change. The device can stay in “sleep
mode” most of the time, which means a reduction in the power
consumption; use of a minimal subset of the REST requests
enables the usage of hardware with lower requirements when
compared with HTTP.

These characteristics favored CoAP for solutions targeted
to embedded devices with severe memory and power supply
restrictions in addition to constrained networks. The REST
architecture and the easily translation to HTTP enables to
create scenarios where old web clients can access CoAP
servers transparently using proxies that make a set of CoAP
resources available like regular http:// or https:// URIs [13].

III. COMPARISON OF THE PRESENTED PROTOCOLS

Since the paper focuses on comparing the proposed
protocols for constrained environments, the attention in the
qualitative analysis is devoted to defining the protocol
characteristics that are best fitted in a baseline scenario. As
defined by Sen (2010), the principal constraints in WSNs
(Wireless Sensor Networks), the base for IoT scenarios, are:
energy constraints, limit processing capability, memory
limitations, unreliable networks, higher latency in
communication, and unattended network operation. According
to the related constrained characteristics, this paper adopts a
baseline scenario, as presented in Fig. 1 composed by sensors
nodes defined as “S”, using 8-32 bits microcontrollers with
16-190 MHz clock rate, 8K-64M bytes RAM (DRAR, SRAM)
memory, and 64K-1M bytes flash memory [15]. All sensors
are powered by batteries and exchange data over an unreliable
network that could be wired or wireless. The data transfer
between “S” nodes is considered in the range of 15kbps to
1Mbps. The collected data are sent to the “Cloud” computing
environment through the Gateway, with a minimum data
transfer of 50kbps, where they become available to the users
in some way.

S

S

S

S

Gateway

Constrained environment

S

Constrained

devices

Constrained

network

Internet

xDSL, LAN,

GPRS, 3G, etc.

Cloud

Service

capability

Fig. 1. Baseline scenario with constrained environment for IoT applications.

Some metrics must be defined in order to populate the
proposed protocols comparison. For a comprehensive analysis,
the following topics will be considered: Implementation (size
cost); Data transport (transmission cost); Communication
patterns; Reliability and QoS; Scalability; Security and
availability of open source implementations.

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

C. Implementation

In terms of implementation, MQTT has the simpler protocol
specification [5], therefore facilitating client development. The
CoAP clients act as HTTP clients but in binary mode, which
becomes simpler than HTTP, but still more complex than
MQTT. Based on those characteristics, both MQTT and CoAP
are suitable for the “S” nodes implementation where there are
energy constraints, limit processing capability and memory
limitations with a small advantage to MQTT.

D. Data transport

MQTT employ connection oriented communication given
by TCP, which is more costly than UDP used by CoAP
protocol. The use of TCP means more data exchanged
between client and server. If TCP or UDP is not necessary,
one alternative is to select the MQTT-SN over 6LoWPAN or
even ZigBee®3, avoiding the complexity of the entire TCP/IP
stack. CoAP was also designed for running over constrained
networks, such as 6LoWPAN, with the goal of keeping
message overhead small, thus limiting the need for
fragmentation what cause significant reduction in packet
delivery probability [6].

The message format in both MQTT and CoAP are binary
but an interesting point about MQTT is that the entire header
has only two bytes, making it an interesting solution for
networks with low transmission rate, represented by the
connection between “S” nodes in the proposed scenario (Fig.
1). In the case of the payload, MQTT is agnostic and data can
be transmitted without specific type or format whereas CoAP
works with binary payload.

E. Communication patterns

Before performs the comparison, it is necessary to introduce
the IoT communication patterns that can be defined as
Telemetry, Inquiries, Commands, and Notifications. In
Telemetry, information flows from devices to the cloud
informing status changes in the device. Fig. 2 presents an
example of Telemetry communication pattern for both
protocols. According to Fig. 2 (b), Telemetry pattern is not
suitable for CoAP because the connection must be started
from system (client) to the device (server), which can confront
addressing problems like mobile roaming or NAT. The MQTT
publish/subscribe model matches with Telemetry pattern
facilitating its application.

Device Broker

Acknowledgement based on QoS

PUBLISH /group_id/device_id/<resource>

Device
(Server)

System
(Client)

CON GET /<resource> Observe: 0 Token 0xCD

ACK 2.05 Observe: 20 Token 0xCD <resource>

Acknowledgement based on QoS

PUBLISH /group_id/device_id/<resource> CON 2.05 Observe: 21 Token 0xCD <resource>

ACK Token 0xCD

RST Token 0xCD

ACK Token 0xCD

(a) (b)
Fig. 2. Telemetry communication pattern example for (a) MQTT, (b) CoAP.

For the Inquiries pattern, requests come from devices to the

3 ZigBee®: specification for a suite of high-level communication protocols

used to create personal area networks built from small, low-power digital
radios. ZigBee is based on an IEEE 802.15.4 standard;

cloud for collecting required information, as illustrated in Fig.
3. According to Fig. 3 (b), CoAP have better performance for
this pattern since they are based on request/response model.
When using MQTT for Inquiries pattern, there is the necessity
of defining a response topic for communication since there is
not a built in response path support which configures an
implementation difficulty.

Device Broker

SUBSCRIBE /group_id/device_id/request

Device
(Client)

System
(Server)

CON GET [0x123] /<info>

ACK [0x123] 2.05 Content <info>

Acknowledgement based on QoS

PUBLISH /group_id/device_id/request/<info>

(a) (b)

Acknowledgement based on QoS

PUBLISH /<info>

Fig. 3. Inquiries communication pattern example for (a) MQTT, (b) CoAP.

In Commands pattern, commands are sent from systems to
device/devices for performing specific activities. Fig. 4
presented the examples for both protocols. Analyzing this
scenario, CoAP presents, for this pattern, the same addressing
problems as detailed in Telemetry. In the case of MQTT, there
is no built in result path support, which requires the definition
of a result topic for working as an answer path. Also, old
commands can be delivered when using “retain” flag, or new
commands can be lost if not using it.

Device Broker

SUBSCRIBE /group_id/device_id/

Device
(Server)

System
(Client)

CON [0x123] POST /<cmd> Token 0xCD

ACK [0x123]

(a) (b)

Acknowledgement based on QoS

PUBLISH /group_id/device_id/<cmd>

ACK [0x345]

CON [0x345] 2.05 Content Token: 0xCD <result>PUBLISH /grup_id/device_id/<cmd>/<result>

Acknowledgement based on QoS

Fig. 4. Commands communication pattern example for (a) MQTT, (b)

CoAP.

Finally, in Notifications the information flows from systems
to device/devices handling status changes in the physical
world, as presented in Fig. 5. In this pattern, the CoAP
addressing problems is also present, On the other hand, MQTT
publish/subscribe model fits in the notification architecture
having problems only if a better flow control is required for
big amount of data at high data rates.

F. Reliability and QoS

All communication patterns can increase their reliability
using some level of QoS, which guarantees data delivery or
even avoids duplication of packets. Both presented protocols
have QoS options that can be used depending on the desired
data flow control. MQTT V3.1 supports 3 levels of Quality of
Service (QoS) that represents the message delivery confidence
[5]. Fig. 6 shows the packet exchange according to this 3
different QoS levels. In Fig. 6 (a), the QoS level 0 is employed
and the publisher sends a message at most once and does not
check if the message arrived to its destination. This lower
level is also called “fire and forget” and the message can be
lost depending on the network condition.

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

Device Broker

SUBSCRIBE /<notify>

Device
(Server)

System
(Client)

CON [0x123] POST /<notify> (content)

ACK [0x123]

(a) (b)

Acknowledgement based on QoS

PUBLISH /<notify>

Fig. 5. Notifications communication pattern example for (a) MQTT, (b)

CoAP,

The QoS level 1, also called “acknowledged delivery”, is

illustrated on Fig. 6 (b). The publisher sends the message at
least once and checks the delivery status using the PUBACK
status check message. However, if PUBACK is lost, the
broker server can probably send the same message twice,
since it has no confirmation of the message being delivered. In
QoS Level 2, also called “assured delivery” and shown in Fig.
6 (c), the messages are delivered exactly once using a 4-way
handshake. Due to its complicated process, it is possible to
have relatively longer end-to-end delays, but there is no
messages loss in this level.

Publisher Broker

PUBLISH (QoS=0)

Publisher Broker

PUBLISH (QoS=1)

Erase

Store

PUBACK

Publisher Broker

PUBLISH (QoS=2)

PUBCOMP

PUBREL

PUBREC

(a) (b) (c)

Erase Erase

Store

Fig. 6. Publish/subscribe messaging model with different QoS level.

In the case of CoAP protocol, the CON and NON messages
acts as QoS levels, where the CON message represents the
higher QoS level, as exemplified in Fig. 7 (a) and (b). A
request sent using NON type has no acknowledge message
sent back by the receiver, which characterizes a low QoS
level. This type of exchange is illustrated in Fig. 7 (c). The
higher is the QoS level, the greater is the exchange of packets.
If messages loss is not such a problem, a lower QoS level can
be used resulting in lower bandwidth and lower end-to-end
delay [16], which configure wired or wireless constrained
networks.

G. Scalability

Architectures based on MQTT protocol can easily scale
horizontally because they are based on publish/subscribe
model. The strength of this model is based on decoupling in
time where publishers and subscribers do not need to be
transmitting at the same time. Beyond that, publishers and
subscribers don’t need to know about each other, which
represent a decoupling in space. Events can be produced or
consumed in an asynchronous way allowing greater scalability
and flexibility [17]. As both protocols rely on broker to
exchange messages, the system infrastructure can be easily
scaled up if more bandwidth or processing power is needed.
CoAP based architectures can also be scalable but in a
different mode since devices are considered resources. But, if

the observe option provided by CoAP is used in a Telemetry
interaction model, clients are allowed to monitor the events
registering its interest by means of an extended GET request
sent to the server node. The server notifies each client node
that has an observation relationship with the event. Although,
the server acts as a broker and high scalability and efficiency
can be performed using caches and intermediaries (proxy)
nodes that multiplex the interest of multiple clients
(subscribers) in the same event into a single association.

CoAP
client

CoAP
server

CON [0xcda1]

ACK [0xcda1]

(a)

GET /temperature

2.05 Content

CoAP
client

CoAP
server

(b)

(Token 0x71)

(Token 0x71)

“21.5”

CON [0xcda2]

ACK [0xcda2]

GET /temperature

4.04 Not found

(Token 0x72)

(Token 0x72)

“Not found”

CoAP
client

CoAP
server

NON [0xcda3]
GET /temperature

2.05 Content

(Token 0x73)

(Token 0x73)

“20.2”

(c)
Fig. 7. Two GET requests with Piggybacked responses [6]: (a) successful
access to the resource and (b) resource not found (c) request and response

carried in non-confirmable message.

H. Security

The security is one of the main problems to be solved in the
IoT scenarios [14]. The MQTT protocol was not designed
with security in mind and, as many other protocols based on
TCP, it uses the Security Socket Layer (SSL) or Transport
Layer Security (TLS) for security. When a CONNECT
message is sent to the broker, a username/password could be
used for authentication. But, as highlighted by Collina et al
(2012), the username and password credentials are transmitted
without any encryption, given rise to one of the security
problems in the protocol. However, an important point is that
the MQTT is payload agnostic, so the payload can be
encrypted in some level for increasing the security in the
communication. For some applications where the transferred
information is not sensitive, TLS/SSL may be too
computationally expensive and only payload encryption may
be enough.

To ensure safety during the exchange of messages among
client and server, CoAP uses the DTLS protocol (Datagram
Transport Layer Security), which is based on TLS (Transport
Layer Security) over UDP instead of TCP. The DTLS has
security problems as well as in TLS. One problem is related to
achieving DTLS translation when CoAP mapping is used at a
proxy for providing end-to-end secure connection. Another
issue concerns secure multicast communications that are not
yet supported [18].

I. Open source implementations

There are several open source implementations for both
protocols, written in different programming languages such
that: C, C++, Java, Python, JavaScript, Go, Objective-C and
many others4. The implementations vary in coverage of
protocols specifications and few of them have some kind of
limitation. For example, certain C implementations of the
MQTT client don’t have QoS type 2 implemented because of

4 For MQTT a reference list of available implementations may be found at

https://github.com/mqtt/mqtt.github.io/wiki/libraries and for CoAP at
http://coap.technology/impls.html.

XXXIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2015, 1-4 DE SETEMBRO DE 2015, JUIZ DE FORA, MG

the increase in communication overhead, code size and
memory consumed. For MQTT-SN, the lack of a well-defined
specification, and the need of fitting customized hardware
architecture, leads to implementations that are incompatible
with each other. Besides presenting a problem, for some
applications running over very constrained resources, it is
necessary a specific implementation.

Table I summarizes the comparison among the main

features of the proposed M2M protocols.

Table I – IOT PROTOCOLS COMPARISON TABLE.

 MQTT MQTT-SN CoAP

Network Protocol TCP/IP Not specified UDP

Payload type Binary Binary Binary

Suitable for
microcontrollers

Yes Yes Yes

Security SSL/TLS Not specified DTLS

Scalability Simple Simple Complex

Network
architecture

Broker based
(publish/subscribe)

Broker based,
client/server,
client/client

Client/server
(request/response)

Communication
pattern

Topic based Topic based
REST

architecture

QoS options Yes Yes Yes

Open Source
Availability

Yes
Application

Specific
Yes

IV. CONCLUSIONS

This paper provided a qualitative comparison among some
important approaches for M2M protocols applied to
constrained ICT environments, more specifically the Internet
of Things. Each protocol has its own characteristics, which
makes them more suitable for a specific situation. The use of
TCP as transport protocol limits its usage in more constrained
environments. Therefore, more lightweight transport
protocols, like 6LoWPAN and ZigBee®, are being employed
enabling new possibilities for constrained devices. The
message flow control can be configured according to the
necessity using the available QoS options in each protocol,
which in turn increases data rate and delay. Security is one of
the main problems for all approaches and must be reviewed
for future versions. In terms of scalability, all proposed
protocols can achieve scalability, where the protocols based on
publish/subscribed model have simpler implementation.

There are many open source implementations for both
protocols written with a diversity of programming languages
that cover most application needs.

Finally, MQTT presented better accordance to the presented
communication patterns besides that has a lightweight and
simple implementation. In the other hand, CoAP can be
applied in the context of each thing being a resource that can
be accessed through an URL. This feature allows CoAP
devices easily adapt to the current web services available.

In summary, the choice depends on application scenario
and more than one protocol can be used depending on the
requirements of the entire system.

ACKNOWLEDGEMENTS

We would like to thank the support of the Department of
Computer Engineer and the Department of Telecommunication
Engineer of the Instituto Nacional de Telecomunicações.

REFERENCES
[1] W. Leister and T. Schulz, “Ideas for a Trust Indicator in the Internet

of Things,” in The First International Conference on Smart Systems,

Devices and Technologies (SMART 2012), 2012, no. c, pp. 31–34.
[2] R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key management

systems for sensor networks in the context of the Internet of
Things,” Comput. Electr. Eng., vol. 37, no. 2, pp. 147–159, Mar.
2011.

[3] C. P. Mayer, “Security and Privacy Challenges in the Internet of
Things,” Challenges, vol. 17. 2009.

[4] M. Collina, G. Corazza, and A. Vanelli-coralli, “Introducing the
QEST broker: Scaling the IoT by bridging MQTT and REST,” in
23rd Annual IEEE International Symposium on Personal, Indoor

and Mobile Radio Communications Introducing, 2012, pp. 36–41.
[5] International Business Machines Corporation (IBM), “MQTT:

Message Queuing Telemetry Transport, version 3.1, protocol
specification.” Eurotech, pp. 1–42, 2010.

[6] Z. Shelby, “RFC 7252: The Constrained Application Protocol
(CoAP).” pp. 1–112, 2014.

[7] C. Pereira and A. Aguiar, “Towards Efficient Mobile M2M
Communications: Survey and Open Challenges,” Sensors, vol. 14,
no. 10, pp. 19582–19608, 2014.

[8] N. O’Leary, “Paho - Open Source messaging for M2M,” Eclipse

Paho’s MQTT, 2014. [Online]. Available:
http://www.eclipse.org/paho/. [Accessed: 21-Dec-2014].

[9] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power CoAP
for Contiki,” 2011 IEEE Eighth Int. Conf. Mob. Ad-Hoc Sens. Syst.,
pp. 855–860, Oct. 2011.

[10] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in
wireless sensor networks: A top-down survey,” Comput. Networks,
vol. 67, pp. 104–122, Jul. 2014.

[11] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S – A
Publish/Subscribe Protocol For Wireless Sensor Networks,” in 3rd

International Conference on Communication Systems Software and

Middleware and Workshops (COMSWARE ’08), 2008, pp. 791–798.
[12] T. Levä, O. Mazhelis, and H. Suomi, “Comparing the cost-

efficiency of CoAP and HTTP in Web of Things applications,”
Decis. Support Syst., vol. 63, pp. 23–38, Jul. 2014.

[13] C. Bormann, A. P. Castellani, Z. Shelby, U. Bremen, and Z. S.
Sensinode, “CoAP: An application protocol for billions of tiny
internet nodes,” IEEE Internet Comput., vol. 16, no. 2, pp. 62–67,
2012.

[14] J. Sen, “A Survey on Wireless Sensor Network Security,” Comput.

Networks, vol. 52, no. 12, p. 24, 2010.
[15] J. H. Kong, L.-M. Ang, and K. P. Seng, “A comprehensive survey

of modern symmetric cryptographic solutions for resource
constrained environments,” J. Netw. Comput. Appl., pp. 1–36, Oct.
2014.

[16] L. Shinho, K. Hyeonwoo, H. Dong-kweon, and J. Hongtaek,
“Correlation Analysis of MQTT Loss and Delay According to QoS
Level,” IEEE, pp. 714–717, 2013.

[17] E. G. Davis, A. Calveras, and I. Demirkol, “Improving packet
delivery performance of publish/subscribe protocols in wireless
sensor networks.,” Sensors (Basel)., vol. 13, no. 1, pp. 648–80, Jan.
2013.

[18] M. Brachmann, O. Garcia-morchon, and M. Kirsche, “Security for
practical coap applications: Issues and solution approaches,” 2011

10th GI/ITG KuVS Fachgespraech Sensornetze (FGSN 2011), no.
Fgsn, pp. 1–4, 2011.

