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Abstract— This paper presents new results on the objective
evaluation of stereoscopic video quality. A balance between the
scores provided by classical objective algorithms and the disparity
information of the reference video is presented, along with a com-
parison between the approximations used to compute the local
spatial information. The performance of the proposed technique
was verified using statistical metrics (correlation coefficients and
root mean square error) that compare the scores provided by the
objective algorithms and the subjective results provided by the
NAMA3DS1–COSPAD1 stereoscopic video quality database. The
obtained results suggest a significant improvement on the per-
formance of the objective algorithms for the proposed technique.

Keywords— Stereoscopic Video, Objective Evaluation Tech-
niques, Spatial Perceptual Information, Disparity

I. INTRODUCTION

Objective evaluation is a fast and a low cost alternative to
time-consuming subjective evaluations. Successfully objective
algorithms were developed to evaluate the 2D video qual-
ity [1], but the 3D video has a new component that needs to
be considered in the design of algorithms: the depth. Recently,
the disparity has been used as a depth estimation [2].

Objective algorithms are computational models, which use
statistical characteristics of the video combined with features
of the Human Visual System (HVS), to estimate the quality
score, classified according to the availability of the origi-
nal signals as: full reference, in which the original video
is compared with the video under test (degraded); reduced
reference, whenever only characteristics of the original video
are available for comparison with the video under test, and
no reference, in which only the video under test is used for
quality assessment.

This paper presents an investigation on the full reference
objective algorithms for 3D video quality measurement when
they are combined with the disparity and spatial informations
present in the reference video. The focus of this research is
to verify the impact of the disparity and spatial information
on the visual attention of the human visual system and its
consequence to the perceived 3D video quality.

The visual attention is a cognitive ability that involves
search, selection and focus of relevant stimuli [3]. Experiments
indicate that the human visual attention is not equally dis-
tributed throughout the image environment, but concentrates
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in a few regions [4]. Several approaches [5], [6], [7], [8], [9]
indicate that the inclusion of methods to identify the visual at-
tention of a scene, i.e., assign a weight to the visual importance
of regions on the image, enhances the evaluation provided by
the objective metrics.

Therefore, the proposed approach combines a weighting,
that is a function of the disparity of the 3D original video, with
the score provided by objective algorithms. The paper presents
a comparative analysis of proposals to identify the spatial in-
formation, and improve the assessment of the 3D video quality.
The following statistical metrics were used to compare the
performance of the proposed approach with the classical algo-
rithms: Pearson Linear Correlation Coefficient (PLCC), Spear-
man Rank-Order Correlation Coefficient (SROCC), Kendall
Rank-Order Correlation Coefficient (KROCC) and Root Mean
Square Error (RMSE). The Confidence Intervals for the PLCC
are also presented.

The remaining of this paper is organized as follows. Sec-
tion II describes some objective algorithms for 2D video
quality used to predict the 3D video quality. Section III
presents the approach used to introduce the disparity infor-
mation contained in the reference video into the objective
algorithm. Section IV describes the approches to estimate the
rate of change of luminance and the local spatial information
and how it was introduced into the objective metrics. The
subjective evaluation with 3D video sequences, performed
by NAMA3DS1-COSPAD1 [10] is reviewed in Section V. A
discussion on the performance of the proposed algorithms is
presented in Section VI. Section VII presents the conclusions.

II. OBJECTIVE APPROACHES

Let V = [vL(x, y, n), vR(x, y, n)] be a 3D video sample, in
which the scalar functions vL and vR correspond to the left
and right views, respectively; (x, y) represents the rectangular
spatial coordinates and n represents the frame number. Let
yet F and H be 3D reference video and the video under
test, respectively. A full reference objective algorithm for 3D
video quality assessment is a function G, such that its image
(G(F,H)) represents the quality of H with respect to F .

The following convention is used in this paper

G(F,H) =
G(fL, hL) + G(fR, hR)

2
, (1)

since the importance of the left and right views is the same.
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A. Peak Signal-to-Noise Ratio

Let f(x, y, n) and h(x, y, n) be scalar functions that rep-
resent 2D video sequences. The Mean Square Error (MSE)
between the signals is computed as

MSE(f, h) =
1

N ·X · Y

N∑
n=1

X∑
x=1

Y∑
y=1

[f(x, y, n)− h(x, y, n)]2 .

(2)
The Peak Signal-to-Noise Ratio (PSNR) is computed as

PSNR(f, h) = 20 · log10

[
MAX√

MSE(f, h)

]
dB, (3)

in which MAX is the maximum value of the gray scale and
MSE(f, h) is the Mean Square Error between f and h.

B. Structural Similarity Index

The Structural SIMilarity (SSIM) [11] is a full-reference
approach to image and video quality assessment based on
the assumption that the HVS is highly adapted to recognize
structural information in the visual environment and, therefore,
the changes in the structural information provide a good
approximation to the quality perceived by the human visual
system.

The SSIM(f, h) is computed as a product of three measures
over the luminance plane: luminance comparison l(f, h), the
contrast comparison c(f, h) and the structural comparison
s(f, h):

l(f, h) =
2µfµh + C1

µ2
f + µ2

h + C1
, (4)

c(f, h) =
2σfσh + C2

σ2
f + σ2

h + C2
, (5)

s(f, h) =
σfh + C3

σfσh + C3
, (6)

in which µ is the sample average, σ is the sample standard
deviation, σfh is the covariance, C1 = (0.01 · 255)2, C2 =
(0.03 · 255)2 and C3 = C2

2 .
The structural similarity index is described as

SSIM(f, h) = [l(f, h)]α · [c(f, h)]β · [s(f, h)]γ , (7)

in which usually α = β = γ = 1.
In practice the SSIM is computed for an 8×8 sliding squared

window or for an 11×11 Gaussian-circular window. The first
approach is used in this paper. Then, for two videos which are
subdivided into J blocks, the SSIM is computed as

SSIM(f, h) =
1

J

J∑
j=1

SSIM(fj , hj). (8)

C. Perceptual Weighted Structural Similarity Index

Regis et al. [12] proposed a technique called Perceptual
Weighting (PW), which combines the local Spatial Perceptual
Information (SI), as a visual attention estimator, with the
SSIM, since experiments indicate that the quality perceived
by the HVS is more sensitive in areas of intense visual
attention [8]. The SI is computed using the Sobel differential
operator, which estimates the magnitude of the gradient vectors
of the video.

The PW technique uses the local SI to weigh the most
visually important regions. This weighting is obtained as
follows: compute the magnitude of the gradient vectors in the
original video by means of the Sobel masks, then generate a
perceptual map in which the pixel values are the magnitude
of the gradient vectors. The frame is partitioned into blocks
8× 8 pixels, and the local SI in each block is computed as

SI(fj) =

√√√√ 1

K − 1

K∑
k=1

(µj − |∇fj(k)|)2, (9)

in which, µj represents the sample average of the perceptual
map in a j-block and K is the number of gradient vectors
in the j-th block. For the case that the frames are partitioned
uniformly in squares 8×8, K = 64. The Perceptual Weighted
Structural Similarity Index (PW–SSIM) is computed as

PW–SSIM(f, h) =

∑J
j=1 SSIM(fj , hj) · SI(fj)∑J

j=1 SI(fj)
. (10)

III. DISPARITY WEIGHTING TECHNIQUE

The disparity that is present in a 3D video sample is an
information related to the stereo perception [2]. This informa-
tion is computed as the difference between two corresponding
pixels in the left and right views. Indeed, as is well know, the
disparity should be considered in the development of objective
algorithms, to improve the correlation between the objective
prediction and the subjective scores.

The disparity map, D(F ), is computed as

D(F (x, y, n)) = |fL(x, y, n)− fR(x, y, n)|, ∀ (x, y, n).
(11)

The introduction of the disparity information in the 2D ob-
jective metrics uses the weighted average of the objective
measurements with the disparity map [13]. This approach
was implemented in two objective metrics, PSNR and SSIM,
producing the DPSNR and DSSIM.

The DPSNRL, i.e., DPSNR for the left view, is computed
as

DPSNRL(F,H) = 20 · log10

[
MAX√

DMSEL(F,H)

]
dB. (12)

The DMSE and the DPSNR for the right view (DMSER
and DPSNRR) are computed in the same manner. Then the
overall DPSNR is the average of the DPSNRL and DPSNRR.

The DSSIM is computed as

DSSIM(F,H) =

∑J
j=1 SSIM(Fj , Hj) · D(Fj)∑J

j=1 D(Fj)
, (14)
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DMSEL(F,H) =

N∑
n=1

X∑
x=1

Y∑
y=1

[f(x, y, n)− h(x, y, n)]2 · D(F (x, y, n))

N∑
n=1

X∑
x=1

Y∑
y=1

D(F (x, y, n))

(13)

in which D(Fj) is the average disparity contained in block j.
The DPW–SSIM is computed as

DPW–SSIM(F,H) =

∑J
j=1 SSIM(Fj , Hj) · SI(Fj) · D(Fj)∑J

j=1 [SI(Fj) · D(Fj)]
.

(15)

IV. LOCAL SPATIAL PERCEPTUAL INFORMATION

The Spatial Perceptual Information (SI) quantifies the com-
plexity of the spatial details present in a video sequence, and it
increases with the spatial complexity of the samples [14]. The
SI is computed by means of gradient vectors, which in turn,
are computed using the Sobel approximations for the derivative
in the n-th video frame (Sobel(Fn)). The standard deviation
of the magnitude of the gradient vectors (std[Sobel(Fn)]) is
calculated for each video frame. The highest value among the
standard deviations represents the SI of the video sample. This
process is mathematically represented as

SI = max{std[Sobel(Vn)]}. (16)

The gradient vectors (~∇V ) estimate the rate of change of
luminance values of the pixels along the horizontal and vertical
directions, their maginitude is computed as

|~∇V | =

[(
∂V

∂x

)2

+

(
∂V

∂y

)2
]1/2

. (17)

In the discrete domain, the derivative operation is computed
by approximations based in finite differences as

∂V

∂x
≈

Y∑
y=1

X∑
x=1

v(x, y) · ex(x, y), (18)

in which v(x, y) is the luminance and ex(x, y) is the element
of the approximation matrix.

The approaches to approximation considered in this work
are: Sobel (19), Prewitt (20) and Robert-cross (21) Their
approximation matrices, for orthogonal directions, are: −1 0 +1

−2 0 +2
−1 0 +1

 ,
 −1 −2 −1

0 0 0
+1 +2 +1

 ; (19)

 −1 0 +1
−1 0 +1
−1 0 +1

 ,
 −1 −1 −1

0 0 0
+1 +1 +1

 ; (20)

[
+1 0
0 −1

]
,

[
0 +1
−1 0

]
. (21)

For the Sobel and Prewitt approaches, the rate of change of
luminance is computed in a coordinate system with 0 and

π
2 rad as orthogonal directions. For the Robert-cross operator,
the angle of the coordinate system is rotated by π

4 rad [15].
The Laplacian is defined as

∇2V =
∂2V

∂x2
+
∂2V

∂y2
. (22)

In image processing, the Laplacian is an isotropic operator,
i.e., its value is independent of the direction of the edge. The
Laplacian operation is approximated in a manner similar to
Equation 18, and its matrix is defined as 0 +1 0

+1 −4 +1
0 +1 0

 . (23)

The local spatial information, computed by Equation 9, was
modified to verify the performance of the objective algorithms,
based in the PW (DPW) technique, when combined with the
information extracted by the differential operators.

The general equation for an objective algorithm, based on
the PW technique, is

M–PW–SSIM =

∑J
j=1 SSIM(Fj , Hj) · SI(Fj)∑J

j=1 SI(Fj)
, (24)

in which M = {R, P, L} denotes the differential approximation
used to compute the magnitude of the gradient vector, or the
Laplacian, in Equation 9 as: R (Roberts), P (Prewitt) and
L (Laplace). The standard PW-SSIM means that the Sobel
approximation was used.

The similar approach is used for the DPW technique, in
which the general equation is

M–DPW–SSIM(F,H) =

∑J
j=1 SSIM(Fj , Hj) · SI(Fj) · D(Fj)∑J

j=1 [SI(Fj) · D(Fj)]
.

(25)

V. SUBJECTIVE EXPERIMENT: NAMA3DS1-COSPAD1

The NAMA3DS1-COSPAD1 stereoscopic video quality
database provides subjective results [16], [10] for the tests,
using the Absolute Category Rating with Hidden Reference
(ACR-HR) method [17], for coding and spatial degradations
scenarios, which include H.264 coding. The Quantization
Parameter (QP = 32, QP = 38 and QP = 44) was used to
generate different levels of spatial degradation.

The diversity of the spatial and temporal features of the
video samples available in the NAMA3DS1-COSPAD1 were
quantified using the Spatial Perceptual Information and Tem-
poral Perceptual Information (TI). The ITU-T Recommenda-
tion P.910 [14] suggests that, to form a set of video samples
for a subjective evaluation some video parameters are taken
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into account, in particular the SI and TI, to prevent that
the subjective evaluation becomes tiring and boring for the
observers. It is important that the chosen videos present a
variety of values of SI and TI.

Fig. 1 indicates the heterogeneity of sources available in the
NAMA3DS1-COSPAD1, in which case each point represents
a reference stereoscopic video.
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Fig. 1: Spatial and temporal heterogeneity found in the video
sequences available in NAMA3DS1-COSPAD1.

VI. SIMULATION RESULTS

The performance of the algorithms was measured using
the following estimators: Pearson Linear Correlation Coef-
ficient (PLCC), Spearman Rank-Order Correlation Coeffi-
cient (SROCC), Kendall Rank-Order Correlation Coefficient
(KROCC) and Root Mean Square Error (RMSE). These
estimators were used to assess the accuracy, monotonicity
and consistency of the objective model prediction with re-
spect to human subjective scores available from NAMA3DS1-
COSPAD1, allowing the comparison and validation of the
performance of the proposed algorithms with state of the art
algorithms.

The PLCC, SROCC, KROCC and RMSE were computed
after performing a non-linear regression on the objective video
quality assessment algorithmic measures, using a four param-
eter monotonic cubic polynomial function to fit the objective
prediction to the subjective quality scores. The function is the
following [18],

DMOS(p)
t = β1 + β2 ·Qt + β3 ·Q2

t + β4 ·Q3
t , (26)

in which Qt represents the quality that a video quality assess-
ment algorithm predicts for the t-th video in the NAMA3DS1-
COSPAD1 Video Quality Database. The non-linear least
squares optimization is performed using the MATLAB R© func-
tion nlinfit to find the optimal parameter β that minimizes
the least squares error between the subjective scores (DMOSt)
and the fitted objective scores (DMOS(p)

t ). The MATLAB R©
function nlpredci was used to obtain the DMOS predicted
scores, after the least squares optimization. The results of the
statistical measures are presented in Table I, the best results
are shown in boldface.

The results indicate that the Prewitt approximation is the
best choice for the PW and DPW objective algorithms, pro-
viding high correlation coefficients and low RMSE. Never-
thenless, the performance of the Laplacian operator is very

interisting, because it needs fewer operations to compute the
local perceptual information [5].

TABLE I: Performance measures of the objective algorithms.

Algorithm PLCC SROCC KROCC RMSE
PSNR 0.774946 0.721424 0.533869 0.689299
SSIM 0.730523 0.716222 0.555117 0.744770

DPSNR 0.863640 0.838604 0.640111 0.549789
DSSIM 0.901635 0.892266 0.746354 0.471688

PW–SSIM 0.915983 0.906776 0.756978 0.437573
L–PW–SSIM 0.886193 0.872006 0.709169 0.505301
R–PW–SSIM 0.907625 0.879398 0.730417 0.457821
P–PW–SSIM 0.922928 0.908693 0.767602 0.419859
DPW–SSIM 0.954403 0.937166 0.815412 0.325572

L–DPW–SSIM 0.954302 0.936619 0.810099 0.325923
R–DPW–SSIM 0.952903 0.934429 0.810099 0.330758
P–DPW–SSIM 0.956889 0.945380 0.820724 0.316774
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Fig. 2: The 95% confidence intervals for the PLCC.

Fig. 2 presents the PLCC with a 95% confidence interval for
the PW and DPW techniques. The Fisher Z transformation was
applied to the PLCC (ρ) to produce the confidence interval.
The Fisher Z transformation is defined as

Z =
1

2
loge

(
1 + ρ

1− ρ

)
, (27)

in which Z follows the Normal distribution with variance

σ2
Z =

1

Ns − 3
, (28)

and Ns is the total number of samples. The confidence interval
for this variable is defined as,

IC(z, 1− α) = (Z − z1−α · σZ , Z + z1−α · σZ). (29)

For α = 0.05, i.e., an interval with 95% of confidence, z0.95 =
1.96, and Equation 29 is rewritten as

IC(z, 0.95) = (Z − 1.96 · σZ , Z + 1.96 · σZ). (30)

The inverse of the Fisher Z transformation is

ρ =
e2z − 1

e2z + 1
, (31)
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and the confidence interval in terms of ρ is defined as,

IC(ρ, 0.95) =
(
e2·(Z−1.96·σZ) − 1

e2·(Z−1.96·σZ) + 1
,
e2·(Z+1.96·σZ) − 1

e2·(Z+1.96·σZ) + 1

)
.

(32)
Fig. 2 suggests that, besides an increase in the correlation

coefficient, there was a reduction in the length of the PLCC
confidence interval for the algorithms that use the disparity
weighting technique and the local spatial information com-
puted by the Prewitt approximation.
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Fig. 3: Scatter plots of subjective scores (DMOS) versus
model prediction. Each sample point represents a 3D test video
sample.

Fig. 3 presents the trend between the set of subjective scores
and the set of objective results. The observation of the scatter
plots indicates a lower dispersion around the prediction curve
for algorithms that use the disparity weighting.

VII. CONCLUSIONS

This paper presents new contributions for the objective
stereoscopic video quality assessment. The proposed algo-
rithms use a disparity weighting strategy to take into account
the stereoscopic information and different approaches to com-
pute the local spatial information, to improve the evaluation.
A reliable assessment is important for systems and services
that use video processing techniques.

The simulation results suggest a significant increase on the
evaluation capacity of the objective algorithms that use the
proposed techniques, in relation to the classical algorithms.
The Prewitt approximation present the best results. The Lapla-
cian operator appears as a good alternative because of the
low computational cost in relation to the first order derivative
operators. For future work, the authors intend to consider
temporal information for the objective evaluation and, compare
with recent published algorithms for stereoscopic video quality
assessment.
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