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Abstract - Many continuous wavelets are defined in the 

frequency domain and do not have analytical expressions in 

the time domain. Meyer wavelet is ordinarily defined in this 

way. In this note, we derive new straightforward analytical 

expressions for both the wavelet and scale function for the 

Meyer basis. The validity of these expressions is 

corroborated by numerical computations, yielding no 

approximation error.  

Keywords – Meyer wavelets, multiresolution analysis, scale 

function. 

I. INTRODUCTION 

Wavelets were introduced in the eighties by J. Morlet 

in the context of analysis of seismic signals [1]. The 

wavelet theory quickly became the outcome of a 

multidisciplinary endeavor. Particularly, they have lately 
gained prolific applications throughout an amazing 

number of areas, especially in engineering [2,3]. 

Essentially, the wavelet transform is signal decomposition 

onto a set of basis function, which is derived from a single 

prototype wavelet by scaling (dilatations and contractions) 

as well as translations (shifts). The orthogonality has long 

been assumed as a fundamental property in virtually all 

standard approaches when analyzing or synthesizing 

signals. Both continuous and discrete wavelet transforms 

(CWT and DWT, respectively) have emerged as a 

definitive tool of signal processing analysis and have 

proven to be more powerful than classical Fourier analysis 
in countless situations [2,4]. Continuous wavelet 

transform furnishes precise information on the local and 

global irregularities [5] and is very robust against spurious 

contamination of the signal. The Meyer wavelet has been 

used in various scenarios, such as in multi fault 

classification [6], or in adaptive filter [7] and fractal 

random fields [8]. However, wavelet algorithm for image 

deblurring is certainly the most attractive advantage 

offered by wavelet in modern multimedia schemes [9], 

among many other applications. Other application that 

requires the knowledge of the analytical expression of the 
wavelet is wavelet-based OFDM systems [10-12]. Meyer 

wavelets were also successfully applied as a basis for 

atomic and molecular systems for solving radial 

Schrödinger equations for atoms [13]. A number of 

continuous wavelets do have analytical close expression 

in time and frequency domain, such as Shannon (sinc), 

mexican hat, beta etc. [3, 4]. Recently approximate 

expressions to represent compactly supported wavelets 

such as daublets and symlets were introduced [14]. 

However, an astonishing, but well established feature of 

wavelets is that in many cases the signal analysis can be 

carried out without knowing the waveform, i.e. without 

the time-domain analytical expression of the mother 

wavelet. This fact is particularly true for the most well-

known compactly supported wavelets (db, coif, sym…) 
and also the Meyer wavelet. 

 

II. CLOSE EXPRESSIONS FOR MEYER WAVELET AND 

SCALE FUNCTION 

A landmark in the development of wavelets is in 1985 

[15], when Y. Meyer, a harmonic analyst, pointed out the 

strong connection with the existing analysis techniques of 

singular integral operators and proposed the first 

nontrivial orthogonal wavelet basis. Unlike the Haar 

wavelets, they are continuously differentiable, yet they do 

not have compact support. Meyer together with Mallat 
also introduced the concept of multiresolution in 1988 [2]. 

Meyer was awarded with the 2010 Gauss Prize [16]. 

The Meyer wavelet is an orthogonal wavelet that is 

indefinitely differentiable with infinite support. The 

Mayer scale function and wavelet are defined in the 

frequency domain in terms of function  by means of 
well-known equations [17]: 
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where, for instance (other choice can be made), 
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and the wavelet spectrum is given by 
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Their corresponding wave plots are shown in Figures 1 

and 2, respectively. 

In order to evaluate the corresponding wave 

forms of the Equations (1) and (2) in time domain, 

denoted by mey(t) and mey(t), we use the inverse 
Fourier transform resulting in: 
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A synchronous detection of the bandpass signal 

(Meyer wavelet) with a carrier in w0=6/3 can be 
achieved. The detection is done in two parts, "in phase" 

and "in quadrature" using low-pass filters for the 

respective components. Figure 3 illustrates the process of 

wavelet decomposition. The analysis is conveniently 

separated into upper and lower branches. 

.

  
Figure 3. Meyer wavelet decomposition in their low-frequency 

components in phase and in quadrature.  

 

Figure 3 shows two analysis branches: 

a) Upper Branch 

  ( )   ( )    [   ].                               (5a) 

b) Lower Branch 

  ( )   ( )    [   ].                               (5b) 

 

For implementation in filter bank, see [18]. Thus, the 

band-pass representation yields:  
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Figure 1. Spectrum of the Meyer scale function. Its support 

is within spectral  band [0, 4/3]. 

Figure 2. Meyer wavelet curve in the frequency domain. Central 

frequency is 5π/3. The support is within spectral band [2π/3, 8π/3] 

mey(w) 

|mey(w)| 

Figure 4. a) Spectrum components in the baseband spectrum for the 

Meyer wavelet. The low-pass must be selected featuring a limited 

bandwidth signal at 0.5 Hz   b) Representation of the spectrum phase in 

terms of the components Sc and Ss, cf. Eqn (6). 
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From Figure 3 it is possible to retrieve mey(t) from its 
components sc(t) and ss(t): 

     ( )    ( )    (   )    ( )     (   ) .      (7) 

Curiously, the “Lower Side Band” version of mey(t) 

modulated with a carrier 6/3,  retrieved the same 

spectrum as the scaling function, mey(t)  i.e. 

ˆ( ) ( ).cos(2 ) ( ).sin(2 )mey mey meyt t t t t      ,      (8) 

where   ̂   ( ) is the Hilbert transform [2] of mey(t).  

The envelope of the Meyer scale function mey(t) is 

given by
2 2ˆ( ) ( )mey meyt t  . This is the same envelope 

of the analytical signal ˆ( ) ( )mey meyt j t  . 

Solving the previous integrals with the aid of "tables 

of integrals" [19-21], it was also possible to derive the 

following analytical expressions: 

 closed analytical expression for the scaling 

function of Meyer, mey(t), 
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 closed analytical expression for the Meyer 

wavelet, mey(t), 
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Analytical similar expressions were not found in the 

literature. Note that the envelope of the Meyer wavelet 
decays with O(t-3), which is faster than the (long) sinc 

wavelet that decays with O(t
-1

). To check then the validity 

of the obtained formulae, the integrals corresponding to 

Equations (3) and (4) were numerically evaluated with the 

aid of MathCadTM and compared with the results from 

Equations (9) and (12), respectively. The error is 

negligible. This can also be observed in Figures 6 and 7 in 

the sequel. 

 

 
 
 
 

 
 

 

 

 

 

 

III. CONCLUDING REMARKS 

This note offers a novel reading of the Meyer wavelet 

in time domain, which was derived by solving the 
previous integrals with the aid of "tables of integrals" and 

rules of integration. Therefore, this approach can be used 

to a number of applications where closed expressions are 

essential. These wavelets expressions have been computed 

on MathCadTM and a graphic assessment between integral 

expression and this new reading is shown. This approach 

seems to be suitable as a natural candidate to replace the 

integral expression where they would have application, 

involving continuous wavelet-based systems, such as 

rotating machine fault, wavelet-based OFDM systems, 

EEC signal analysis, velocity pulse signal analysis and 
Palmprint Based Recognition, with less computational 
resources to build them.  
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Figure 6. Scale function of Meyer where mey(t) represent the 

inverse Fourier graph of Equation (3) and (t) represents the 
plot from Equation (9). 

Figure 7. Wavelet of Meyer where mey(t) represent the 

inverse Fourier graph from Equation (4) and (t) represents 

the plot of derived Equation (12). 

 Figure 5. a) Phase and quadrature components of the 

representation of Meyer wavelet. b) Generating wavelet Meyer 

from the phase and quadrature components according to the 

representation of band-pass of Eqn (7). The standard function is 

obtained from Eqn (4). 
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