Medição da densidade óssea através de ondas eletromagnéticas

Agnaldo Souza Cruz, Sandro Gonçalves da Silva e Bruno de Castro

Resumo – Esse artigo apresenta uma proposta para medir a Densidade Mineral Óssea (DMO) como auxílio no diagnóstico da osteoporose. Um arranjo de antenas, afinado em uma frequência de uso geral e para aplicações médicas, é usado para medir a atenuação relativa do sinal em amostras de osso bovino, sílica e farinha de osso. Com a implementação de uma Máquina Vetor de Suporte (MVS), é possível estabelecer padrões para classificar a DMO como alta ou baixa.

Palavras-Chave — BMD, MVS, antena, osteoporose, atenuação.

Abstract — This article presents a proposal to measure the Bone Mineral Density (BMD) as a backup in the diagnosis of osteoporosis. An antenna arrangement, tuned to a frequency of general and medical use, is used to measure the relative attenuation of the signal on several samples of bovine bone, silica and bone powder. By implementing a Support Vector Machine (SVM) it is possible to establish patterns to classify the BMD as high or low.

Keywords— BMD, SVM, antenna, osteoporosis, attenuation.

I. INTRODUÇÃO

A cada trinta segundos uma pessoa sofre algum tipo de fratura em resultado da osteoporose (Figura 1). Uma em cada duas mulheres e um de cada quatro homens com mais de 50 anos terão fraturas relacionada à osteoporose. O Boletim da Organização Mundial de Saúde relata que uma cifra de 25% dos pacientes com 50 anos morrem por causa de complicações médicas causadas por fraturas ligadas à osteoporose [12]. Ela se tornou mais comum do que o colesterol alto, alergias e resfriado comum. Em geral, é silenciosa e não há sintomas de perda óssea até a ocorrência de fraturas.

A osteoporose é uma doença que se caracteriza por uma baixa massa óssea e deterioração na microarquitetura do tecido ósseo (Figura 1), levando a um aumento do risco de fraturas. Ocorre quando a massa óssea diminui mais rapidamente do que a capacidade do corpo de substituí-la, gerando a perda substancial da força do osso [12]. Ela afeta todos os ossos do corpo e não apresenta sinais ou sintomas até que uma fratura aconteça.

Há uma tendência de que o diagnóstico da osteoporose seja feito com base num certo nível de redução de massa óssea e não com base na presença de fraturas. A baixa densidade mineral óssea (DMO) é o fator de risco mais importante para o teste de Baixa Massa Óssea (BMD) [13].

Fig. 1. Efeitos da osteoporose.

Extensivos dados têm mostrado que a baixa massa óssea e o risco futuro de fraturas estão inversamente relacionados. A BMD é valiosa como previsor de fraturas assim como o colesterol alto ou pressão arterial elevada são previsores de infarto do miocárdio e acidente vascular cerebral respectivamente (OMS, 1994).

Dentre as técnicas disponíveis para determinação da DMO, tem-se a *Dual Energy X-ray Absorptiometry* (DEXA), a Tomografia Quantitativa Computadorizada (TQC) e a Ultrassonografia Quantitativa (QUS). As duas primeiras recorrem a feixes de raios X com diferentes níveis de energia e a terceira utiliza a velocidade e atenuação do som para medidas de DMO [12]. Na primeira descrição, tem-se a presença de radiação ionizantes que podem alterar ou destruir células do corpo humano. Já na segunda, embora não exista a presença de irradiação, há variabilidade entre os aparelhos utilizados, tendo-se assim variações nas medidas obtidas, sem a aplicação de critérios de diagnósticos clássicos empregados pela densitometria.

Este artigo tem por objetivo apresentar uma forma de medição da densidade óssea através da atenuação de ondas eletromagnéticas e posterior utilização da Máquina Vetor de Suporte para classificação da DMO. Para tanto, utilizou-se um arranjo de duas antenas de microfita com configuração retangular, operando a uma frequência de 2,49 GHz. Neste experimento, foram submetidas aos testes amostras de sílica, farinha de osso e osso bovino.

II. ANTENAS

Para o experimento, optou-se por um arranjo de duas antenas de microfita com configuração retangular (Figura 2), devido à facilidade de desenvolvimento, fabricação, características de radiação e construção simples de baixo custo [7].

Inicialmente, para construção das antenas, definiu-se a frequência de 2.44 GHz, alimentada por uma linha de microfita em um substrato de fibra de vidro com permissividade de 4,4 e altura (h) de 0,9 cm e dimensões descritas na Tabela I.

Fig. 2. Modelo da antena projetada (BALANIS,2009)

TABELA I. DIMENSÕES DA ANTENA PROJETADA

F (GHz)	W (cm)	L (cm)	Y ₀ (cm)	W ₀ (cm)
2,44	3,74	2,92	0,969	0,172

Os valores constantes da Tabela I foram obtidos aplicandose as seguintes fórmulas [7].

$$W = \frac{1}{2f_r \sqrt{\mu_0 \epsilon_0}} \sqrt{\frac{2}{\epsilon_r + 1}} = \frac{\nu_0}{2f_r} \sqrt{\frac{2}{\epsilon_r + 1}}$$
(14-6)
$$\epsilon_{\text{reff}} = \frac{\frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \left[1 + 12\frac{h}{W} \right]^{-1/2}$$
(14-1)
$$\frac{\Delta L}{h} = 0.412 \frac{(\epsilon_{\text{reff}} + 0.3) \left(\frac{W}{h} + 0.264\right)}{(\epsilon_{\text{reff}} - 0.258) \left(\frac{W}{h} + 0.8\right)}$$
(14-2)
$$L = \frac{1}{2f_r \sqrt{\epsilon_{\text{reff}}} \sqrt{\mu_0 \epsilon_0}} - 2\Delta L$$
(14-7)

As antenas foram projetadas e simuladas no *software* comercial Ansoft HFSS, com casamento de impedância ideal na frequência de 2,44 GHz (Figura 3).

Fig. 3. Perda de retorno – antena projetada no HFSS.

Após a confecção das antenas em laboratório (Figura 4) e medições realizadas no Analisador de rede Agilent - E5071C ENA (Figura 5) na prática, a frequência de ressonância ficou em 2,49GHz - 2,05% de margem de erro da antena projetada.

Fig. 4. Antenas confeccionadas em laboratório.

Fig. 5. Arranjo de antenas usado no experimento e Analisador de rede Agilent - E5071C ENA.

III. SIMULAÇÕES – FARINHA DE OSSO E SÍLICA

As simulações foram realizadas com quatro amostras de sílica e farinha de osso em quantidades alternadas adquiridas comercialmente. Como recipientes para as amostras, foram utilizados cilindros de acrílico com medidas de 6,0 cm de diâmetro e 6,6 cm de altura (Figura 6).

Fig. 6. Amostras de pó de osso e sílica.

A Tabela II exibe a variação do nível de atenuação em amostras com diferentes quantidades de farinha de osso e sílica, comprovando que as ondas eletromagnéticas emitidas na faixa de 2,49 GHz podem caracterizar as combinações de substâncias.

AMOSTRA	OSSO	SÍLICA	ATENUAÇÃO
	(g)	(g)	(dB)
01	-	79,16	-32,0114
02	182,67	0,00	-34,1453
03	104,42	37,65	-33,1704
04	141,54	17,30	-33,3856

TABELA II. AMOSTRAS DE PÓ DE OSSO E SÍLICA

IV. EXPERIMENTO - OSSO BOVINO

Por reproduzir satisfatoriamente os aspectos de anomalia dos seres humanos, optou-se pelo uso de fêmures bovinos. Estes foram identificados com três grupos de A1, A2, A3; B1, B2, B3; C1,C2 e C3 para indivíduos distintos (Figura 7).

Fig. 7. Amostras de osso bovino utilizados.

Os ossos foram classificados por massa original e massa alterada (Tabela III). Após a pesagem, eles foram submetidos à radiação de microondas na frequência de 2,49 GHz e foram verificados os seus respectivos níveis de atenuação.

TABELA III. MASSAS DE OSSOS ORIGINAIS E ALTERADAS

OSSO	ORIGINAL	ALTERADO
	(g)	(g)
A1	204,2	198,6
A2	142,9	137,2
A3	145,3	141,0
B1	148,3	144,2
B2	139,3	133,1
B3	120,6	117,1
C1	123,0	120,2
C2	145,7	143,4
C3	132,6	123,4

Realizada a descaracterização das amostras de osso, através de perfurações usando furadeira e brocas de diferentes diâmetros, procedeu-se com a pesagem e submissão à radiação na mesma frequência das amostras originais. Para cada amostra submetida à radiação, foram realizadas 200 leituras de sinais, totalizando 1800 sinais, sendo metade para massa óssea original e metade para massa óssea alterada.

Os resultados obtidos estão registrados na Tabela IV. Notase que as amostras originais apresentaram atenuação maior que as amostras alteradas com o processo de perfuração.

TABELA IV. ATENUAÇÃO MÉDIA DOS OSSOS

OSSO	ORIGINAL	ALTERADO	VARIAÇÃO
	(dB)	(dB)	(dB)
A1	-38,8783	-38,6707	0,2076
A2	-39,7907	-39,5220	0,2687
A3	-40,3946	-40,3184	0,0762
B1	-43,7795	-42,8605	0,9190
B2	-40,5919	-39,9600	0,6319
B3	-38,9521	-38,8154	0,1367
C1	-39,9055	-39,8818	0,0237
C2	-41,5019	-40,8901	0,6118
C3	-40,4362	-38,9570	1,4792

V. MÁQUINA VETOR DE SUPORTE

A. Definição

A Máquina Vetor de Suporte (SVM – em inglês) é um algoritmo que possui a capacidade de construir um hiperplano (Figura 8) com superfície de decisão, definindo uma margem de separação entre dois exemplos, positiva e negativa. Ela aplica o principio da teoria da aprendizagem estatística, em que, considerando o caso de padrões separáveis, produz-se um valor de zero para o primeiro termo e minimiza-se o segundo [4]. Este algoritmo possui uma teoria mais complexa e rebuscada se comparada a outros algoritmos mais simples, como KNN.

As técnicas de aprendizagem de máquina utilizam um princípio chamado indução, no qual é possível atingir conclusões genéricas a partir das entradas fornecidas. Estas técnicas possuem dois tipos de aprendizagem: não supervisionado e supervisionado.

No primeiro, não existe a presença de um modelo previamente informado para aprendizagem da máquina. Ela aprende com a ajuda de uma medida de qualidade. Esta técnica é usada quando se tem por meta encontrar padrões em um conjunto de dados complexos. No segundo, que é a técnica de aprendizagem supervisionada, existe a entrada de um modelo, afim de que a máquina possa aprender. Têm-se as entradas e saídas conhecidas. A partir deste modelo, o algoritmo aprende com o objetivo de generalizar para posteriores entradas com as saídas esperadas.

Fig. 8. Hiperplano ótimo para padrões separáveis.

Em virtude disso, a SVM tem um bom desempenho de generalização em problemas de classificação de padrões, este sendo um atributo único das máquinas vetor de suporte. O objetivo é produzir um classificador que funcione de forma correta com exemplos que ainda não foram aplicados durante o treinamento. Para tanto, é utilizado um recurso chamado de método de *Kernel*, que é capaz de produzir uma transformação para dar dimensionalidade aos dados, de forma a serem linearmente separáveis. Dentre os métodos disponíveis, foram utilizados neste experimento os métodos Linear, Polinomial e *Radial Basis Function* (RBF) [11].

Para o treinamento da SVM, foram separadas no total 900 leituras de sinais dos ossos A2, B3 e C1 com massa óssea original e medidas dos diâmetros superior, inferior, mediano e diâmetro da medula de cada amostra, usados para caracterização do indivíduo. A biblioteca utilizada para aprendizado de máquina foi a LibSVM [15] por ser otimizada para Máquina Vetor de Suporte, escrita em C na versão 3.17.

VI. RESULTADOS

Realizado o treinamento da SVM e posteriormente os testes com as amostras A2, B3, e C1 (TABELA V), originais e alteradas, foram obtidos os melhores resultados com classificação correta em 100% das amostras, com os métodos de *Kernel* Polinomial e Linear, atestando a eficiência destes.

TABELA V.	OSSOS U	TILIZADOS	PARA	TREINAR	А	SVM

0320	DIÂMETRO				
ORIGINAL	SUPERIOR	MEIO	INFERIOR	MEDULA	
	(cm)	(cm)	(cm)	(cm)	
A2	4,0	4,4	4,5	2,4	
B3	4,0	4,0	4,0	2,0	
C1	3,6	3,6	3,6	2,0	

VII. CONCLUSÕES

Conclui-se que, através de apenas uma onda não ionizante na faixa de 2,49GHz, é possível avaliar o nível de atenuação no tecido ósseo e, com a aplicação da Máquina Vetor de Suporte, alimentada com características obtidas no experimento, é possível classificar uma amostra como tendo densidade óssea baixa ou alta. Pretende-se, para pesquisas futuras, estudar e aplicar processos de descaracterização das amostras pelo uso de ácidos, bem como ampliar o universo amostral, incluindo variáveis (a título de exemplo: tecido epitelial, conjuntivo e nervoso), com o objetivo de viabilizar o uso prático deste experimento.

REFERÊNCIAS

- GARDNER, Ernest; GRAY, Donald J.; RAHILLY, Ronan O'. Anatomia - Estudo Regional do Corpo Humano. Ed.4 Rio de Janeiro, RJ, 2008.
- [2] MARTINI, Frederic H.; TIMMONS, Michael J.;TALLITSCH, Robert B. Anatomia Humana. Ed. 6 Porto Alegre, RS, 2009.
- [3] MARTINI, Frederic H. Atlas do Corpo Humano. Ed. 6 Porto Alegre, RS, 2009.
- [4] HAYKIN, Simon. *Redes Neurais Princípios e Prática*. Ed. 2 Porto Alegre, RS, 2008.
- [5] SILVA, Ivan Nunes da; SPATTI, Danilo Hernane; FLAUZINO, Rogério Andrade. *Redes Neurais Artificiais Para Engenharia e Ciências Aplicadas*. São Paulo, SP, 2010.
- [6] BALANIS, Constantine A. *Teoria de Antenas Análise e Síntese*. Ed. 3, Vol 1, Rio de Janeiro, RJ, 2009.
- [7] BALANIS, Constantine A. Teoria de Antenas Análise e Síntese. Ed. 3, Vol 2, Rio de Janeiro, RJ, 2009.
- [8] BARROS, Jannayna Domingues; OLIVEIRA, José Josemar Júnior; FARIAS, Robson Fernandes; SILVA, Sandro Gonçalves. *Microwave Characterization Using Wavelets Na application related to bone tissue and bone meal with silica*. MOMAG 2010.
- [9] SADIKU, Matthew N. O. *Elementos do Eletromagnetismo*. Ed. 3, São Paulo, SP, 2004.
- [10] JÚNIOR, João Bosco Amaral; JÚNIOR, José Lamartine Távora. Estudo Comparativo de Previsão Entre Redes Neurais Artificiais, Máquina de Suporte Vetorial e Modelos Lineares: uma aplicação à estrutura a termo das taxas de juros.
- [11] CARVALHO, Lorena A. C.; Uma Introdução às Support Vector Machines. 2007.
- [12] HENDERSON, Janet E.; GOLTZMAN, David; The Osteoporosis Primer. CAMBRIDGE UNIVERSIT PRESS, Cambridge, UK, 2000.
- [13] National Osteoporosis Foundation. Clinician's Guide to Prevention and Treatment of Osteoporosis. Washington, DC: Nacional Osteoporosis Foundation; 2010.
- [14] U.S. Departament of Health and Human Services. Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD: U.S. Departament of Health and Human Services, Office of the Surgeon General, 2004.
- [15] CHANG, Chih-Chung; LIN, Chih-Jen; LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1—27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Agnaldo Souza Cruz, Sandro Gonçalves Silva e Bruno Henrique de Castro, Departamento de Engenharia Elétrica, Universidade Federal do Rio Grande do Norte, Natal-RN, Brasil, E-mails: agnaldo@ct.ufrn.br, sandro@ct.ufrn.br, bcastro@ct.ufrn.br.