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Construction of E8 as a left ideal of the Silver
algebra

Carina Alves and Jean-Claude Belfiore

Abstract— Silver code was originally discovered in [1-4] for
2×2 multiple-input multiple-output (MIMO) channels. This code
can be constructed algebraically from a particular cyclic division
algebra, Silver algebra. Space-Time Block Codes (STBC) based
on an order of a cyclic division algebra of index 2 such that the
volume of the Dirichlet’s polyhedron of the group of units is small,
are better suited for decoding using the method of algebraic
reduction since the approximation error is smaller [16]. In this
paper we propose a new construction of E8-lattice from Silver
algebra and whose algebraic reduction behaves better than the
one of the Golden code.

Keywords— Algebraic reduction, algebraic lattices, cyclic divi-
sion algebra, space-time codes.

Resumo— O Silver code foi descoberto em [1-4] para canais
MIMO com 2 antenas transmissoras e 2 antenas receptoras.
Este código pode ser construı́do algebricamente através de uma
determinada álgebra de divisão cı́clica, Silver álgebra. Códigos
espaço-tempo baseados em uma ordem de uma álgebra de divisão
cı́clica de ı́ndice 2, tal que o volume do poliedro de Dirichlet
do grupo das unidades é menor, são mais adequados para a
decodificação utilizando o método de redução algébrica, uma
vez que o erro de aproximação é menor [16]. Neste artigo, nós
propomos uma nova construção do reticulado E8 a partir da
Silver álgebra e cuja redução algébrica se comporta melhor do
que o Golden code.

I. INTRODUCTION

Signal constellations having a lattice structure have been
studied as meaningful tools for transmitting data over both
Gaussian and single-antenna Rayleigh fading channels [10].

More recently, the need for higher data transmission has led
to consider communication channels using multiple antennas
at both transmitter and receiver ends (MIMO stands for
multiple input/ multiple output channel).

In the case of Minimum Delay Space-Time code (codewords
are now square matrices), maximizing the minimum rank
requires that all nonzero codewords are invertible. Recently
cyclic division algebras have been introduced in the context
of coherent Space-Time coding. These are non-commutative
algebras which naturally yield families of invertible matrices,
or in other words, linear codes that fulfill the rank criterion.

A 2 × 2 perfect space-time code for 2 × 2 MIMO has
been proposed in [1], [2], [3], [4] that offers full rate and full
diversity. Recently, this code has been named as Silver code in
[9] and it has normalized minimum determinant 1/

√
7, slightly

lower than Golden code, but it allows reduced-complexity
maximum likelihood decoding [5-6]. It is shown in the li-
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teratures that lattice reduction makes decoding easier. Lenstra-
Lenstra-Lovász (LLL) lattice reduction algorithm is the most
widely used due to its polynomial average complexity. In [16],
a new reduction approach has been proposed, called algebraic
reduction.

Algebraic codes such that the volume of the Dirichlet’s
polyhedron of its units group, V ol(PO1

), is small are better
suited for decoding using the method of algebraic reduction
[16] since the approximation error is then reduced.

In this paper we propose to construct the densest lattice 8-
dimensional, namely E8-lattice from a maximal order of the
Silver algebra such that V ol(PO1) is much smaller than the
volume of the polyhedron corresponding to the Golden code
algebra studied in [16]. We show some comparisons in terms
of the normalized minimum determinant.

This paper is organized as follows: in Section II we present
introductory concepts; in Section III we introduce the system
model, space-time block codes and lattices; in Section IV we
present the Silver algebra; in Section V we present a new
construction of E8 from Silver algebra; in Section VI we
present a brief idea concerning algebraic reduction. Finally
in Section VII we compute the volume of the Dirichlet
polyhedron for the group of units. Section VIII concludes the
paper.

II. CYCLIC ALGEBRAS, ORDERS AND DISCRIMINANTS

A. Definitions

We consider number field extension L/F where F denotes
the base field and L∗ (resp. F∗) denotes the set of the non-zero
elements of L (resp. F).

Let L/F be a Galois extension of degree n such that its
Galois group G = Gal(L/F) is cyclic, with generator σ.
Choose a element γ ∈ F∗. We construct a non commutative
algebra, denoted by A = (L/F, σ, γ), as follows:

A = L⊕ eL⊕ e2L⊕ · · · ⊕ en−1L

where e ∈ A is an auxiliary generating element subject to the
relations

xe = eσ(x) for x ∈ L and en = γ.

Recall that ⊕ denotes a direct sum. Such an algebra is called
a cyclic algebra. It is a right vector space over L, and as such
has dimension (A : L) = n.

Cyclic algebras naturally provide families of matrices
thanks to an explicit isomorphism between the split algebra
A⊗FL (⊗ denotes a tensor product) and the algebraMn(L),
the n-dimensional matrices with coefficients in L.



XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

An element x = x0 + ex1 + · · · + en−1xn−1 ∈ A has the
following standard representation as a matrix

x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) · · · γσn−1(x2)
...

...
...

. . .
...

xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

 .

We call this representation the left regular representation.
Next proposition tells us when a cyclic algebra is a division

algebra.
Proposition 1: [18] (Norm Condition): The cyclic algebra

A = (L/F, σ, γ) of degree n is a division algebra if and only
if γn/p is not the norm of some element of L∗ for any prime
divisor p of n.

Due to the above proposition, the element γ is often referred
to as the non-norm element.

The minimum determinant determines the asymptotic pair-
wise error probability (PEP), this gives rise to natural nume-
rical measures for the quality of a code. In order to get a good
lower bound to the minimum determinant it is natural exploit
fully the multiplicative structure of the cyclic division algebra,
and go with the so-called orders within the algebra.

Definition 1: Suppose that L/F is a cyclic extension of
algebraic number fields. Let A = (L/F, σ, γ) be a cyclic
division algebra and let γ ∈ O∗F be an algebraic integer of
F. The OF-module

Λ = OL ⊕ eOL ⊕ · · · ⊕ en−1OL

where OL is the ring of integers of L, is a subring of the cyclic
algebra (L/F, σ, γ). We refer to this ring as the natural order.
Note also that if γ is not an algebraic integer, then L fails to
be closed under multiplication.

The most important algebraic object for the design of lattice
codes from algebraic number fields is the ring of algebraic
integers. In division algebras, the analogous of this concept is
what is called a maximal order. It is showed in [18] that in
order to maximize the minimum determinant we have to use
maximal orders.

We use the previous notation.
Definition 2: An OF-order O in A is a subring of A, having

the same identity element as A, and such that O is a finitely
generated module over OF and generates A as a linear space
over F. O is said to be maximal if it is not properly contained
in any other OF-order in A.

Definition 3: Let m = dimFA. The discriminant of the
OF-order Γ is the ideal d(Γ/OF) in OF generated by the set

{det(TrA/F(xixj))
m
i,j=1 | (x1, · · · , xm) ∈ BΓ, i, j = 1, · · · ,m}

where BΓ = {x1, · · · , xn} is any OF- basis of Γ.

It is readily seen that whenever Γ⊂ O are two OF-orders,
then d(O/OF) is a factor of d(Γ/OF). It turns out (cf. [17,
Theorem 25.3]) that all the maximal orders of a division
algebra share the same discriminant. In this sense a maximal
order has the smallest possible discriminant among all orders
within a given division algebra, as all the orders are contained
in a maximal one.

III. SPACE-TIME BLOCK CODES AND LATTICES

A. Connection between Space-time block codes and lattices

A lattice is a discrete finitely generated free Abelian sub-
group of a real or complex finite-dimensional vector space V ,
called the ambient space.

Consider a system with nt transmit antennas and nr receive
antennas. The complex baseband channel, within a single
fading block of T symbol durations, can be expressed as:

Ynr×T = Hnr×ntXnt×T +Wnr×T . (1)

The entries of H are i.i.d. complex Gaussian random
variables with zero mean and variance per real dimension
equal to 1

2 , and W is the Gaussian noise with i.i.d. entries of
zero mean and variance N0. Channel matrix H is supposed to
be perfectly known at the receiver. X denotes the transmitted
codeword.

The subscripts indicate the corresponding matrix dimen-
sions and will be omitted for simplicity.

Consider the column-wise matrix vectorization function
vec(·) which also separates real <(·) and imaginary =(·) parts
as

vec(Y ) = (<(y11),=(y11), · · · ,<(ynr1),=(ynr1), · · · ,
· · · ,<(y1T ),=(y1T ), · · · ,<(ynrT ),=(ynrT ))T (2)

and the complex-to-real matrix conversion ri(·) which replaces
each complex entry of a matrix H = (hij) with a 2 × 2 real
matrix (

<(hij) −=(hij)
=(hij) <(hij)

)
.

The MIMO channel Y = HX + W can be rewritten as a
2ntT real vector channel y = Hx+ w, where y,H, x and w
are given by

vec(Y ) =

 ri(H) 0
. . .

0 ri(H)

× vec(X) + vec(W ).

The codewords in a STBC correspond to points x in the
N = 2ntT dimensional Euclidean space RN . When the STBC
is a linear infinite code the points x form a lattice Λ defined
by some generator matrix R, so that we identify the code with
the lattice

C∞ = Λ = {x = Ru : u ∈ ZN}.

A finite code C ⊆ C∞ corresponds to a finite constellation
carved from the infinite lattice Λ.

When nt = nr = T = n we can reliably encode at most
k = n2 information symbols. In this case Λ is said to have
full rank. Full-rank lattices yield full-rate space-time codes
with the maximum multiplexing gain.

B. System model

We consider a quasi-static 2×2 MIMO system employing a
space-time block code (STBC). The received signal is given in
(1). We are interested in STBCs that are subsets of a principal
ideal of a maximal order O in a cyclic division algebra A of
index 2 over F (a quaternion algebra).
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C. Determinant of lattices constructed from left ideals

Let ΛI be the Z-lattice obtained from a left ideal I of a
maximal order O. The following result gives the value of its
determinant.

Lemma 1: Let F be an imaginary quadratic field and let
I be a left ideal of a maximal order O of a cyclic division
algebra A of index 2 over F, with discriminant δO. Then

det(ΛI) = (=(θ))8 ·NF/Q(δO) ·NF/Q(nrA/F(I))4 (3)

where {1, θ} is a basis of OF, nrA/F(I) denotes the reduced
norm of I and =(θ) denotes the imaginary part of θ.

Proof: From [18, Lemma 5.1], we know that, if Γ is a
free OF-module of rank 4, then√

det (ΛΓ) = (=(θ))4 · |d (Γ/OF) |

where ΛΓ is the lattice obtained from Γ and d (Γ/OF) is the
discriminant of Γ. Now equation (3) can be easily derived
since

|d (Γ/OF) |2 = NF/Q(δO) ·NF/Q(nrA/F(I))4.

D. E8-lattice

The E8-lattice has a number of desirable properties. It is the
best-known lattice in eight dimensions, in the sense of having
the densest packing, highest kissing number and being the best
quantizer [11]. It also has an efficient decoding algorithm.
The lattice generator matrix is triangular, which makes it
suitable for encoding. In addition, the E8-lattice points are
either integers or half-integers; for implementations, this may
be more suitable than writing arbitrary values to memory.
E8 is also suited to communicating binary data since, by

construction A, we have

1√
2
E8/Z8 ' (8, 4)F2

where (8, 4)F2
is the extended binary Hamming code of length

8 and dimension 4.
We propose here a new construction of E8-lattice from

Silver algebra SA (see V).

IV. SILVER ALGEBRA

We use the algebraic structure of the Silver algebra to
construct the E8-lattice. For this algebra, V ol(PO1

) is much
smaller than the one of the Golden code algebra.

The Silver algebra [9] is given by, SA = (L/F, σ, γ) where
F = Q(

√
−7) is the center, L = F(i) is the maximal subfield,

γ = −1 is the non-norm element and σ is the generator of the
Galois group of L/F given by,

σ :

{
i→ −i√
7→ −

√
7

The ring of integers of L is OL = Z[i, θ], where θ = 1+
√
−7

2 .
The minimal polynomial of θ is x2 − x+ 2.

A tipical element ` in the Silver algebra is of the form,
` = `0 + e`1 where `0, `1 ∈ L and e2 = −1. The matrix
representation of ` is given by,

X` =

(
`0 −σ(`1)
`1 σ(`0)

)
.

Here, the natural order is not maximal order. By using the
MAGMA software, we compute a maximal order O for the
Silver code algebra with basis {1, i, e, ie}. This maximal order
O can be written as

O = Z[θ]⊕ iZ[θ]⊕ eZ[θ]⊕
(

1 + i+ e+ ie

2

)
Z[θ],

where
e =

(
0 1
−1 0

)
.

The Silver code is given by the set of all matrices of the
form,

X =

(
x1 −x∗2
x2 x∗1

)
+

(
1 0
0 −1

)(
z1 −z∗2
z2 z∗1

)
where, (

z1

z2

)
= U

(
x3

x4

)
,

and U is a unitary matrix given by,

U =
1√
7

(
1 + i −1 + 2i
1 + 2i 1− i

)
.

Here {xi}4i=1 are the information symbols drawn from a subset
of the Gaussian integers Z[i]. The complex conjugation is
denoted by (·)∗. It is showed in [9] that the Silver code is
a subset of the Silver algebra.

V. CONSTRUCTION OF E8−LATTICE

Let ΛI be a lattice, where I is a left ideal of a maximal
order O of SA. A necessary (but not sufficient) condition for
ΛI to be isomorphic to

√
cE8, a scaled version of E8, is that

det(ΛI) = c8, c an integer. In order to fulfill this condition
(see Lemma 1), we need that

D4
F ·NF/Q(δO) ·NF/Q(nrSA/F(I))4 = c8. (4)

In this case, |DF| = 7 and NF/Q(δO) = 28. In order to find
a left ideal I of a maximal order O from SA with reduced
norm 14, we will consider subfields K of SA.

Subfields of SA are of the form

K = F
(√
−x2

1 − x2
2 − x2

3

)
.

This ideal I will be the product of two prime ideals I1

and I2 in O with respective absolute norm 7 and 2. So, it is
enough to find ideals J1, J2 ∈ OK such that{

7 = NF/Q(NK/F(J1))
2 = NF/Q(NK/F(J2))

Thus to construct I1 we consider K = Q(
√
−7,
√
−3)

(x1 = x2 = x3 = 1). In this case J1 is generated by

1/2(2− 2ω − θ),



XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

ω =
√
−3 and θ = (1 +

√
−7)/2. After embedding J1 in SA

and we get a left ideal I1, generated by

(1 + θ)− θ
(

1

2
(1 + i+ e+ ie)

)
.

Now to construct I2 we consider K = Q(
√
−7,
√
−1)

(x1 = 1 and x2 = x3 = 0). In this case J2 is generated
by

−1 + (−1 + θ)ω,

ω =
√
−1. After embedding J2 in SA and we get a left ideal

I2, generated by
−1 + (−1 + θ)i.

The left ideal I = I1I2 then gives a Z-lattice with Gram
matrix (after rescaling),

G(ΛI) =



6 3 0 −6 0 −3 3 −5
3 12 6 0 3 0 8 6
0 6 6 3 0 4 3 5
−6 0 3 12 −4 0 −2 6
0 3 0 −4 6 3 3 4
−3 0 4 0 3 12 −1 6
3 8 3 −2 3 −1 6 3
−5 6 5 6 4 6 3 12


.

This matrix has determinant 1 and all diagonal terms are
even integers. So, lattice ΛI is the only even unimodular lattice
in dimension 8, E8. By computer we have verified that the
normalized minimum determinant is

√
2/7.

The Golden code also gives the E8-lattice and the norma-
lized minimum determinant is 1/

√
5 [8], while the Silver code

gives the Z8-lattice and the normalized minimum determinant
is 1/
√

7 [9]. So in terms of the normalized minimum determi-
nant, our code is better than the Silver code and the Golden
code.

VI. ALGEBRAIC REDUCTION

In this paper we give a brief idea of the principle of
algebraic reduction. For details see [16].

First of all, we normalize the received signal. In the system
model (1), the channel matrix H has nonzero determinant with
probability 1, and so the system can be rewritten as

H =
√

det(H)H1, H1 ∈ SL2(C).

Therefore the system is equivalent to

Y1 =
Y√

det(H)
= H1X +W1.

Algebraic reduction consists in approximating the normalized
channel matrix H1 with a unit U of norm 1 of the maximal
order O of the algebra of the considered STBC, that is an
element U of O such that det(U) = 1.

In the general case, the approximation is not perfect, i.e.,
H1 6= U, so we must take into account the approximation error
E, i.e., H1 = EU.

We have seen that ideally the error term E should be unitary
in order to have optimality for the Zero Forcing (ZF) decoder,
so we should choose the unit U in such a way that E =

H1U
−1 is quasi-orthogonal. This requires that Frobenius norm

||E−1||2F should be minimized1:

Û = argmin
U ∈ O

det(U) = 1

||UH−1
1 ||2F . (5)

VII. COMPUTING THE VOLUME OF THE DIRICHLET
POLYHEDRON FOR THE GROUP OF UNITS

In [16] an algebraic reduction technique has been introduced
to decode space-time block codes (STBC) based on maximal
orders of quaternion algebras. The key idea is to approximate
the normalized channel matrix by a unit of the corresponding
maximal order, with reduced norm 1. An algorithm to find the
nearest unit to the normalized channel matrix was described.
The search algorithm is based on the action of SL2(C) on the
3-dimensional hyperbolic space H3 [12], [14].

In [16], it has been shown that codes based on quaternion
algebras such that the volume of the Dirichlet’s polyhedron
of its group of unit is small are better suited for algebraic
reduction. This volume is known a priori and only depends
on the choice of the quaternion algebra. Quaternion algebras
can be seen as special cases of cyclic algebras.

Theorem 1: [14] (Tamagawa Volume Formula). Let A be a
quaternion algebra over F such that A ⊗Q R ∼= M2(C). Let
O be a maximal order of A. Then the hyperbolic volume is
given by,

V ol(PO1) =
1

4π2
ζF(2)|DF|3/2

∏
p|δO

(Np − 1).

where O1 = {U ∈ O∗ | det(U) = 1}, ζF denotes the
Dedekind zeta function2 relative to the field F, DF is the
discriminant of F, δO is the discriminant of O, p varies among
the primes of OF, and Np = [OF : pOF].

In the case of the Golden Code algebra [16], |DQ(i)| = 4,
ζQ(i) = 1.50670301 · · · and V ol(PO1) = 4.885149838 · · · .
In the case of Silver code algebra, |DQ(θ)| = 7, ζQ(θ) =
1.8948414 · · · , δO = 24 and Np − 1 = 1 and therefore
V ol(PO1) = 0.88891 · · · , much smaller than the Golden Code
algebra. Therefore the algebraic reduction behaves better when
is applied to the Silver algebra than the one of Golden Code.

VIII. CONCLUSIONS

In this paper we showed that an ideal of some maximal
order of the Silver algebra is well-suited for the algebraic
reduction method since the volume of the Dirichlet polyhedron
of its group of units is much smaller than the volume of
the polyhedron corresponding to the Golden code algebra.
This offers the advantage of reduced complexity decoding.
Moreover, this left ideal, as a lattice, is also equivalent to E8,
which make this space-time code as dense as possible.

1Remark that since det(E) = 1, ||E||2F = ||E−1||2F .
2The Dedekind zeta function is defined as ζF(s) =

∑
I

([OF : I])−s,

where I varies among the proper ideals of OF.
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