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LR-Aided Detection for Large-MIMO System via
Ant Colony Optimisation

José Carlos Marinello & Taufik Abrão

Abstract— In this work heuristic ant colony optimisation
(ACO) procedure is deployed in conjunction with lattice reduction
(LR) technique aiming to improve the performance-complexity
tradeoff of detection schemes in MIMO communication. A
hybrid LR-ACO MIMO detector using the linear minimum mean
squared error (MMSE) criterion as initial guess is proposed and
compared with other traditional (non)linear MIMO detectors, as
well as heuristic MIMO detection approaches from the literature,
in terms of both performance and complexity. Numerical results
show that the proposed LR-ACO outperforms the conventional
ACO MIMO detector, as well as the proposed ACO detector
with the MMSE solution as initial guess, with a significant
complexity reduction. The LR-ACO-based MIMO detector achi-
eves a substantial improvement in terms of BER performance
while expending lower computational resources than others ACO-
based MIMO detectors considered. The performance-complexity
results suggest that the proposed LR-ACO-MIMO is a promising
solution for large number of antennas and/or modulation order,
or even correlated MIMO channel scenarios.

Keywords— Large MIMO systems; ACO; lattice reduction;
maximum-likelihood estimation; MMSE.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems are known
by providing a significant spectral efficiency improvement
on wireless communication systems [1]. Therefore, in the
last decade many researches in this field have been done
due to the new wireless system requirement of high data
rates, imposed by the recent telecommunications services and
technologies, allied with the large interest in saving resources,
like spectrum and power. It is known that very high data
rates can be achieved when using a large number of antennas
and/or modulations orders (Large MIMO), and that on these
cases the detection task becomes challenging, since there
is a considerably enhancement on the inter layer/antenna
interference (ILI), and/or a lower noise robustness, requiring
thus more sophisticated and efficient detection techniques.

Among the linear detectors widely known the zero for-
cing (ZF) and the minimum mean squared error (MMSE)
based techniques present low complexity and the ability to
operate under ill-conditioned channel matrices; however both
linear detection techniques for MIMO is clearly inferior to
the performance achieved by the maximum likelihood (ML)
detector. Recently, the sphere decoder (SD) approach [2] has
becoming an alternative to the ML, presenting a near-optimum
performance; however SD approach results in a prohibitive
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complexity for implementation under low or medium signal-
to-noise ratio (SNR) operation regions on real communication
systems; in fact, under low SNR operation region, the SD
complexity becomes of the same order of ML complexity.

An appealing procedure to improve the MIMO linear de-
tectors performance under correlated channels and simultane-
ously resulting in a feasible complexity consists in deploying
lattice reduction (LR) technique [3], [4]. This technique trans-
forms the partial correlated channel into an equivalent one,
with a better conditioned channel matrix. Having a near-
orthogonal near-uncorrelated channel transformation imple-
mented, at the receiver side the detection can be carried out
easily deploying a low-complexity linear detector scheme.

The ant colony optimisation (ACO) is a technique inspired
on the behavior of ants in nature that was originally proposed
for combinatorial optimisation problems, such as the traveling
salesman problem [5]. Many works have been disseminated
applying this technique to several combinatorial (or discrete)
and continuous optimisation problems that arise in telecommu-
nications, such as detection in code division multiple access
systems (CDMA) [6] [7], detection in MIMO systems [8]
[9], resource allocation on wireless networks [10], among
others. A simple ACO procedure applied to MIMO detection
is presented in [8], in which the heuristic is combined with ZF
and V-BLAST MIMO detectors. However, numerical results
show that the proposed detectors were not able to achieve
ML performance for medium and high SNR regions. In [9], a
different detection scheme based on ACO has been proposed;
but also this technique results in a remarkable performance
loss compared with ML detector.

Hence, as an alternative to the ACO detector of [8] and
[9], we propose in this contribution a near-optimum MIMO
detector based on ant colony optimisation heuristic approach,
in which part of the search complexity has been shifted for the
initial detection stage, by deploying a low complexity linear
detector as a start point in the search solution carried out in
a second stage. This way, it will be shown that performing
the search on the LR reduced domain, it is possible to obtain
a significant improvement in the performance × complexity
tradeoff with the LR-ACO detector even when applied to a
MIMO system under large number of antennas.

II. MIMO SYSTEM MODEL

In the adopted MIMO system, it is assumed that there
are nT transmit antennas at the transmitter side, and nR

receive antennas at the receiver. Besides, the information
transmitted symbol vector is x = [x1 x2 . . . xnT

]T , where
xi denotes the transmitted symbol at the ith antenna and
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assumes a value of the squared quadrature amplitude mo-
dulation (M -QAM) alphabet; so, the complex-valued symbol
(finite) set is given by S =

{
A+

√
−1 · A

}
, where A ={

± 1
2a; ± 3

2a; . . . ; ±
√
M−1
2 a

}
is the real-valued finite set. The

parameter a =
√
6/(M − 1) is used for normalizing the

power of the complex valued transmit signals to 1. Using
matrix notation, the received complex-valued signal over a
MIMO channel is written as:

r = Hx+ n (1)

where the corresponding receive signal vector r has dimension
nR × 1; besides, n ∼ CN (0, N0I) represents the additive
white Gaussian noise (AWGN) with variance σ2

n = N0,
which is observed at the nR receive antennas, thus Eb/N0 =
nR/(log2(M)σ2

n) holds. Furthermore, the nR × nT complex-
valued channel matrix H was assumed uncorrelated complex
Gaussian fading gains with unit variance.

In order to facilitate the numerical analysis, real and ima-
ginary part of (1) are treated separately; so, the system model
can be rewritten as:

r = Hx+ n (2)
with the real-valued channel matrix

H =

[
ℜ{H} −ℑ{H}
ℑ{H} ℜ{H}

]
∈ R

n×m (3)

and the real-valued vectors

r =

[
ℜ{r}
ℑ{r}

]
; x =

[
ℜ{x}
ℑ{x}

]
; n =

[
ℜ{n}
ℑ{n}

]
∈ R

n (4)

where r,n ∈ R
n, x ∈ Am, m = 2nT and n = 2nR. Note

that now, the information vector assumes values only over the
finite set of real-valued: x ∈ A2nT .

The maximum likelihood (ML) detector (MLD) searches the
symbol in the set A2nT that minimises the distance between
the receive signal r and the reconstructed signal Hx, i.e

x̂ML = arg min
x∈A2nT

||r−Hx||2 (5)

Hence, the MLD in MIMO systems is equivalent to an
exhaustive search of a combinatorial optimisation problem,
which becomes prohibitive when the constellation order and
number of antennas increase substantially.

The conventional minimum mean squared error (MMSE)
detector for MIMO system is another linear detector, whose
preprocessor output is given by:

x̂MMSE = H

(
N0

Es

I+HTH

)−1

r (6)

where Es = log2(M)Eb is the energy per symbol. Note that,
by defining the real-valued extended channel matrix and the
extended receive signal vector as follows:

HEXT =

[
H

κI2nT

]
; rEXT =

[
r

02nT

]
(7)

where κ =
√

N0

Es
and 02nT

is a zero-valued column vector of

length 2nT , we can redefine (6) as: x̂MMSE = H
†
EXTrEXT .

III. LATTICE REDUCTION AIDED MIMO DETECTORS

The aim of lattice-reduction is to transform a given basis
H into a new basis H̃ with vectors of shortest length or,

equivalently, into a basis consisting of roughly orthogonal
basis vectors. Usually, H̃ is much better conditioned than H.

Hence, let us suppose that the lattices generated by the
column vectors of MIMO channel H and LR-reduced channel
H̃ matrices are the same. This implies there exists an integer
unimodular matrix T that satisfies H̃ = HT. Then, the
received signal in (2) can be rewritten as:

r = HTT−1x+ n = H̃z+ n, where z = T−1x (8)

LR-based Minimum Mean Squared Error MIMO detection.

The extended received signal vector rEXT is multiplied by the
pseudo-inverse of the reduced extended channel matrix H̃

†
EXT ,

resulting: z̃MMSE = H̃
†
EXTrEXT .

Quantisation operation and the demapping onto the original

base. Since in the lattice reduction procedure the original
symbols of the QAM constellation are shifted and scaled
by the matrix T, before re-mapping the vector zMMSE to the
original constellation, this shifting-scaling operations must be
reverted [11], resulting in:

ẑMMSE = 2 ·
⌈
zMMSE − β′T−11

2

⌋
+ β′T−11 (9)

where 1 is unitary column vector, and ⌈·⌋ is the rounding
function for the near integer. As shown in [3], this process
is equivalent to the quantisation operation (over the vector
zMMSE ) for the nearest point of the constellation T−1x, as
described by (9). After quantisation operation, the vector
ẑMMSE is demapping onto the original base by multiplying to
the unimodular matrix: x̂MMSE = TẑMMSE . Hence, x̂MMSE is
detected as the symbol associated to the constellation point
with the minimal distance.

IV. ACO MIMO DETECTION

From (5), the MIMO detection problem can be seen as a
combinatorial optimisation problem. Therefore, the ant colony
optimisation is a proper technique to be applied. In the ACO-
MIMO detector proposed in [9], Nants ants seek iteratively
for better solutions accordingly to a cost function. For MIMO
communications systems, the optimal solution is given by (5),
so the following cost function can be adopted in the ant colony
optimisation context:

F (s) = ||r−Hs||2 = ||r̂−Rs||2 (10)

where r̂ = QHr, and H = QR is the QR decomposition of
H, being Q a orthogonal matrix with dimension n ×m and
R an upper triangular matrix, dimension m×m.

Hence, the dij distance related to the "sij"path, i.e., assumed
that the jth symbol of the set A has been transmitted at the
ith antenna is calculated into the ACO algorithm deploying
the recursive relation:

dij = |r̂i−
m∑

l=i+1

Rils̃l−Riisj |, s̃i = arg min
sij∈A

dij . (11)

where i should progressively decrease from m to 1, sj ∈ A,
and s̃l are the hard decision of the transmitted symbol sl that
have been tentatively made decision [9].
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Besides, the distances dij are then converted into the heuris-
tic values ηij using a log-sigmoid function: ηij = (1+edij)−1.
Such values have influence in the probability calculation of
the paths traced by the active ants across the iterations of the
algorithm; this ant paths following probability is computed as:

pij =
[τij ]

α[ηij ]
β

∑
j∈M [τij ]α[ηij ]β

(12)

where τij is the pheromone level over the path sij , and the
constants α and β weight the importance of τij and ηij ,
respectively. These levels are a way to implement evolution
mechanism in the algorithm along the iterations, and are
analog to the substances that real ants deposit on the best paths
in searching food process. They are set up with an initial value,
and as soon as the Nants complete their paths s̃

(n)
k , they are

updated at the n+ 1 iteration according to

τ
(n+1)
ij = (1 + ρ)τ

(n)
ij +

Nants∑

k=1

∆τkij (13)

respectively, where ρ is the pheromone evaporation rate (ER)
and ∆τkij is given by:

∆τkij =

{
F (s̃

(n)
k ) if (i, j) ∈ s̃

(n)
k ,

0 otherwise.
(14)

The lower cost function found so far and the associated
path are assigned, respectively, to the variables Fbest and sbest,
which represents the solution given by the algorithm.

A. Proposed Detection Schemes

Firstly, some modifications in the ACO-MIMO detector
described above is introduced in such a way that the search
can be readily started from an initial point, which in fact would
be the solution offered by any low-complexity linear MIMO
detector; besides, the pheromone update is done on a closest
way of that shown in [5]. Finally, adapting this heuristic search
algorithm taking into account the improved channel conditions
provided by the LR technique, we can considerably improve
the overall MIMO system performance at cost of an affordable
increasing in complexity, as discussed in Section V.

1) ACO MIMO Detection with an Initial Guess: Initially,
if in the eq. (11) we use s̃ as the initial solution given by
any low-complexity linear MIMO detector, such as ZF or
MMSE, with or without LR aiding, the heuristic information
will be obtained taking advantage of the information provided
by this detector. This way, as much better the information
provided by the initial detector is (i.e., the bit-error-rate (BER)
performance), the more reliable the final achieved heuristic
information, and less processing (time-consuming) is needed
for the ants to search and find a reliable high-quality solution.
Hence, in this work we use the initial guess for the ACO input
as s̃ = x̂MMSE , deployed in the calculation of (11).

The other modification introduced herein is related to the
pheromone updating. Since the cost function (10) should be
minimised, eq. (13) and (14) may be not completely appro-
priate, since these calculations possibly introduce an excessive
pheromone accumulation on the paths controlled by ρ, which

can erroneously provide a higher pheromone deposition level
over the paths under worse evaluation (i.e., high cost function).
To correct this effect, herein (14) is re-written as:

∆τkij =

{
̺

F (̃s
(n)
k

)
if (i, j) ∈ s̃

(n)
k ,

0 otherwise.
(15)

where ̺ is a constant to be adjusted experimentally. In a
similar way suggested in [5], herein we also implemented a
second pheromone deposition rule, which takes into account
the best solution found so far by the ACO algorithm:

∆τ
(n)
elitist =

{
δ

F (s
(n)
best)

if (i, j) ∈ s
(n)
best,

0 otherwise.
(16)

where δ is a constant to be adjusted experimentally. As a
consequence, eq. (13) becomes:

τ
(n+1)
ij = (1− ρ)τ

(n)
ij +

Nants∑

k=1

∆τkij +∆τ
(n)
elitist (17)

2) LR-based ACO MIMO detection: One of the main issues
to be solved in the ACO MIMO detector adaptation to the
reduced domain, with better conditioned channel gain matrix,
is the fact on the LR domain, there is no fixed constellation,
as discussed in [12]. Since z = T−1x, each channel matrix
remains on a different reduced transformed constellation.
Obviously, to calculate all these constellation points for each
channel matrix gain realisations is practically unfeasible.

In order to solve this problem, the ants’ search for the
optimal solution initially takes place on the neighborhood of a
initial solution, namely reduced domain neighborhood (RDN)
procedure [12]. In this work, the initial solution is fed by the
LR-MMSE MIMO detector.

Since every constellation can be seen as a shifted and scaled
version of the integer constellation Z

n [11], the procedure
starts taking the shifted and scaled version of the vector zMMSE ,
expressed by the first term of (9): z̃MMSE = zMMSE−β′

T
−1

1

2 .
Hence, the neighborhood is obtained as the combinations
of the adjacent integers on each element of z̃MMSE , after
quantisation, being N the number of elements calculated per
dimension. N = 5 was adopted in [12]; however, the problem
was treated in a complex-values format. Since in this work we
are adopting equivalent real-values format, we have adopted
N = 3. Also eq. (11) should be adapted to the reduced domain,
becoming [12]:

d̃ij =
∥∥∥R̃(z̃MMSE − z̃)

∥∥∥
2

(18)

in which i should decrease from m to 1, z̃ is a vector formed
by the elements of ⌈z̃MMSE⌋ on the positions i+1 . . .m, i.e., the
j-th neighbor of ⌈z̃MMSEi

⌋ at the i-th position, and zeros at the
positions i− 1 . . . 1, and R̃ is given by the QR decomposition
of the reduced channel matrix H̃. Finally, the cost function
deploying the reduced LR domain description becomes:

F̃ (z) = ||r̃− R̃z||2, where r̃ = Q̃r. (19)

The remainder of the algorithm is constructed in the same
way as the ACO MIMO detector on the original channel gain
matrix domain.
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V. NUMERICAL RESULTS

It is well-known that the ACO algorithm performance
depends on the appropriate choice for its parameters, ensuring
this way a desirable acceleration in algorithm’s convergence
[7] while simultaneously guaranteeing a reduction in the
computational complexity. Hence, as a first step in this section,
a procedure aiming to obtain a ACO-MIMO detector input
parameter optimisation is carried out.

A. Input Parameter Optimisation

The parameters ̺, δ and evaporation rate (ER) ρ present
little influence on the ACO algorithm performance [5]. [7].
This way, after non-exhaustive tests, these parameters were
chosen empirically, being adopted the following values: ̺ = 1,
δ = 3 and ρ = 0.3. On the other hand, α and β parameters
drastically affect the ACO algorithm performance depending
on the optimisation problem type. As discussed in [5], [7], α is
related to the importance given to the pheromone levels in the
probability calculations, eq. (12), in such a way to determine
the convergence speed of the algorithm, while β is related to
the importance given to the "a priori" information in (12).

Varying the parameters α ∈ [0, 1] and β ∈ [0.2, 2], with
steps of 0.2, all possible parameter combinations on these
intervals were performed for three set of antennas and order
modulation combinations: a) 4 × 4 and 64-QAM; b) 8 × 8
and 16-QAM; c) 20 × 20 4-QAM. Besides, for each system
configuration analysed, the minimum bit-error-rate (BERmin)
achieved was saved. Fig. 1 shows the achieved BER perfor-
mance as a function of both ACO input parameter variations,
for system configuration c) 20×20 and 4-QAM. Similar results
were obtained considering system configuration a) and b).
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Fig. 1. LR-ACO input α and β parameters variation for 20 × 20, 4-QAM
and SNR = 16 dB.

In order to obtain the best α, β-parameter combination,
the ratios between the bit error rate of each combination
and the minimum BER obtained over that specific MIMO
configuration, BERα,β

BERmin
, were calculated. Also, for each para-

meter combination, the mean among the ratio considering
the three configurations were obtained. Finally, the optimum
α, β-parameter combination was obtained as that one with
the lower mean. As a result, the best combination obtained

was α = 0.8 and β = 0.8 for three system configurations.
Hereafter, these values are adopted for both proposed LR-ACO
MIMO detectors.

B. LR-ACO MIMO Performance under Optimised Input Para-

meters

Fig. 2 shows the performance for ACO detectors: a) after
I = 40 iterations; and b) correspondent convergence at a
SNR of 26 dB, considering the ACO-MIMO detectors for
4×4 antennas and 64-QAM modulation. For a notation issue,
the ACO proposed in [9] is called "ACO1", while the ACO
proposed herein which performs the search starting from the
LR-MMSE solution in the original domain as "ACO2", and
the proposed ACO herein performing the search in a reduced
domain is denominated "LR-ACO". Analysing the convergence
velocity in Fig. 2.b, one can see that the LR-ACO needs
only I = 10 iterations to achieve total convergence. However,
for the other ACO-based detectors either the search remains
evolving slowly along the I = 40 iterations, or converge result
is very poor (high BER).
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Fig. 2. a) BER performance after I = 40 iterations for ACO-based detectors;
b) Convergence under SNR=26dB, considering 4×4 antennas, 64-QAM and
optimised ACO input parameters.

Fig. 3 shows the performance of other both configurations:
a) 8×8, 16-QAM and b) 20×20, 4-QAM. All MIMO detectors
convergence behavior and speed are similar to those obtained
in 2.b, with LR-ACO total convergence achieved after a small
number of iterations when the constellation order decreases:

LR-ACO 4× 4, 8× 8, 20× 20,
Convergence 64-QAM 16-QAM 4-QAM

I 10 5 3

C. Complexity Analysis

The algorithm complexities can be evaluated in terms of
the total number of floating-point operations (flops). A flop is
defined as an addition, subtraction, multiplication or division
between two floating point numbers [13]. Table I shows the
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number of flops, obtained by manually counting them, for the
considered ACO-MIMO detectors, assuming equal numbers of
antennas (nT = nR = n) and M -QAM modulation format.
The complexity for all four detectors is of order O(n3).
Alternatively, the MIMO detector complexities are depicted
on Fig. 4 when both the number of antennas nT = nR and the
modulation order M increase.

In the same way as [12], another advantage of the LR-
ACO is that its complexity does not depend on the modulation
order (M ), since the neighborhood size (N ) remains the same.
One can see that the LR-ACO detector complexity remains
always below the complexity of ACO1 and ACO2, whereas
it presented a substantial performance improvement, for the
Large-MIMO conditions. It should be noted from Table I that
the complexities of all ACO MIMO detectors do not include
the parameters optimisation stage, since it is done just only a
single time for adjusting the algorithm, and from then on, the
ACO-based algorithms are able to operate under any MIMO
modulation order and number of antennas.
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Fig. 3. BER Performance for a) 8×8, 16-QAM; b) 20×20, 4-QAM. I = 40

iterations for ACO detectors.

TABLE I

NUMBER OF OPERATIONS FOR EACH MIMO DETECTOR.

Detector Number of Operations

LR-MMSE (258/3)n3 + 33n2 − 1

ACO1 (208/3)n3 + 8n2 − 4n+ 4n2
√
M + 8n

√
M+

+ I
[

10n
√
M + (4n2 + 6n)Nants + 1

]

ACO2 (466/3)n3 + 41n2 − 4n+ 4n2
√
M + 8n

√
M+

+ I
[

10n
√
M + (4n2 + 6n)Nants + 2n+ 1

]

LR-ACO (466/3)n3 + 41n2 − 4n+ 4n2N + 8nN+
+ I

[

10nN + (4n2 + 6n)Nants + 2n+ 1
]

Nants: # ants; I: # iterations; N : LR-ACO neighborhood size.

VI. CONCLUSION

A low-complexity heuristic-based detector for Dense-
MIMO communications systems combining ACO with LR
techniques has been proposed; the LR-ACO-MIMO achieves
a substantial improvement in terms of BER performance
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Fig. 4. Detector Complexities. For ACO1 and ACO2: Nants = 20, I = 40;
LR-ACO: Nants = 20, I = 10.

while expending lower computational resources than others
ACO-based MIMO detectors considered. The performance and
complexity results suggest that the proposed LR-ACO-MIMO
is a promising solution for large number of antennas and/or
modulation order, or even correlated MIMO channel scenarios.
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