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I. RANK CODES

A. Definition
We denote by {L,N} a normed space, where L is a space

and N is a norm function defined on L.
There exist two types (or, representations) of rank codes:

the matrix representation and the vector representation.
In the matrix representation, rank codes are defined as

subsets of a normed space {FN×n
q , Rk} of N× n matrices

over a finite (base) field Fq, where the norm of a matrix
M ∈ FN×n

q is defined to be the algebraic rank Rk(M) of this
matrix over Fq. The rank distance between two matrices
M1 and M2 is the rank of their difference Rk(M1−M2). The
rank distance of a matrix rank code M⊂ FN×n

q is defined as
the minimal pairwise distance: d(M) = d = min{Rk(Mi−
M j) : Mi,M j ∈M, i 6= j}.

In the vector representation, rank codes are defined as
subsets of a normed n-dimensional space {Fn

qN , Rk} of n-
vectors over an extension field FqN , where the norm of a vec-
tor v∈Fn

qN is defined to be the column rank Rk(v |Fq) of this
vector over Fq, i.e., the maximal number of coordinates of
v which are linearly independent over the base field Fq. The
rank distance between two vectors v1, v2 is the column rank
of their difference Rk(v1−v2 | Fq). The rank distance of a
vector rank code V⊂ Fn

qN is defined as the minimal pairwise
distance: d(V) = d = min{Rk(vi−v j) : vi,v j ∈ V, i 6= j}.

B. Background
Algebraic coding theory may be considered as the theory

of subsets of a certain normed finite-dimensional space Γ

over the finite field equipped with a norm function N.
The most known norm in coding theory is the Hamming
weight of a vector. It turns out that the rank function Rk(A)
of matrices A over fields can be considered as the norm
function. In particular, the well-known inequalities for sums
of matrices |Rk(A)−Rk(B)| ≤ Rk(A+B)≤ Rk(A)+Rk(B)
define implicitly the rank distance relations on the space
of all matrices of identical size. Explicitly, the concept of
the rank metric was introduced by Loo-Keng Hua [1] as

”Arithmetic distance”. Philippe Delsarte [2] defined the rank
distance (or, q-distance) on the set of bilinear forms (equiv-
alently, on the set of rectangular matrices) and proposed the
construction of optimal codes in bilinear form representation
but without any decoding algorithm. Ernst M. Gabidulin
[3] introduced the rank distance for vector spaces over
extension fields and found connections between rank codes
in the vector representation and in the matrix representation.
Optimal codes in vector representation were described. Fast
coding and decoding algorithms were proposed for optimal
codes.

II. THEORY

The normed spaces {FN×n
q , Rk} and {Fn

qN , Rk} are
isomorphic isometrically. Let a basis Ω = {ω1,ω2, . . . ,ωN}
of FqN over Fq be chosen. Then each vector v =[
v1 v2 . . . vn

]
∈ Fn

qN can be mapped into the N × n
matrix M ∈ FN×n

q by replacing each coordinate v j with the
N-column consisting of coefficients in representing v j by
the basis Ω. This mapping is bijective and isometric.

Given a rank code M in matrix representation one can
construct a rank code V in vector representation with the
same size, code distance and pairwise distances, and vice
versa. We refer to codes M and V as related codes.

The size S = |M|= |V| of related codes with code distance
d satisfy the Singleton bound

logq S = logq |M|= logq |V|
≤min(N(n−d+1),n(N−d+1))=Nn−(d−1)max{N,n}.

Proof: Let M1,M2, . . . ,MS be N×n matrices of a code
M. Consider the set of submatrices consisting of the first
N−d +1 rows of each matrix. All these submatrices must
be different. Otherwise a couple of matrices Mi, M j will
exist at rank distance ρ(Mi−MJ) ≤ d− 1. The number of
different (N−d +1)×n submatrices is equal to q(N−d+1)n.
Hence, S≤ q(N−d+1)n. Replacing roles of rows and columns
leads to the inequality S≤ q(n−d+1)N .

Codes reaching this bound are called maximum rank
distance codes, or, MRD codes.
A rank code M in matrix representation is called Fq-linear
if M is a subspace of FN×n

q .
A rank code V in vector representation is called FqN -linear
if V is a subspace of Fn

qN .
Mapping a FqN -linear code V in vector representation into
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the related code M in matrix representation results in a Fq-
linear code.
Mapping a Fq-linear code M in matrix representation into
the related code V in vector representation results in not
necessary a FqN -linear code.
Constructions of Fq-linear rank codes in the matrix repre-
sentation and FqN -linear rank codes in the vector represen-
tation will be considered.

A. Delsarte’s optimal rank codes in matrix representation
Delsarte’s construction of rank codes in bilinear form

representation is presented here in matrix representation.

Assume that n ≤ N. Let Tr(x) =
N−1
∑

l=0
xql

, x ∈ FqN , be the

Trace function from FqN into Fq. Let d be an integer in

{1,2, . . . ,n}. Let u =
[
u0 u1 . . . un−d

]
∈ Fn−d+1

qN . Let
µ1,µ2, . . . ,µn be elements of the field FqN linearly indepen-
dent over the base field Fq. Let Ω = {ω1,ω2, . . . ,ωN} be a
basis for FqN .
Define a code in matrix representation as the set of N× n
matrices M =

{
M(u) = [Mi j(u)] : u ∈ Fn−d+1

qN

}
, where

Mi j(u) = Tr

(
n−d

∑
s=0

usωiµ
qs

j

)
.

Then M is a rank code with code distance d reaching the
Singleton bound |M|= qN(n−d+1).
Let Ai(n,d), i = 0,1, . . . ,n, be the number of code matrices
with rank i. The weight distribution is as follows:

A0(n,d) = 1, i = 0
Ai(n,d) = 0, i = 1, . . . ,d−1.

Ai(n,d) =

[
n
i

]
i−d

∑
s=0

(−1)s

[
i
s

]
q

s(s−1)
2 (qN(d−i+1−s)−1),

if i = d, . . . ,n, where

[
n

i

]
=

i−1
∏
j=0

qn−q j

qi−q j is the Gaussian

binomial coefficient.

B. Optimal rank codes in vector representation

A FqN -linear vector code V is a subspace of the normed
space {Fn

qN , Rk}. Denote by (n,k,d) a code V of dimension
k≤ n and rank distance d. Such a code can be described in
terms of a full rank generator matrix Gk over the extension
field FqN of size k× n. Code vectors {v} are all linear
combinations of this matrix. Thus the size of a code is equal
to |V|= qNk.

Equivalently, a rank code V can be described in terms
of a full rank parity-check matrix Hn−k over FqN of size
(n− k)×n. It satisfies the condition GkH>n−k = O, where O
is the all zero k× (n− k) matrix. Code vectors {v} are all
solutions of the linear system of equation vH>n−k = 0.

For optimal (MRD) codes, it must be k = n− d + 1, or,
n− k = d−1.

General constructions of MRD codes in terms of parity-
check matrices can be described as follows. Let h1,h2, . . . ,hn
be a set of elements from the extension field Fqn linearly
independent over the base field F. Let s be a positive integer
such that gcd(s,N) = 1. Then a parity matrix of the form

Hd−1 =



h1 h2 . . . hn

hqs

1 hqs

2 . . . hqs

n

hq2s

1 hq2s

2 . . . hq2s

n

. . . . . . . . . . . .

hq(d−2)s

1 hq(d−2)s

2 . . . hq(d−2)s
n


.

defines an MRD (n,k,d) code with code length n ≤ N,
dimension k = n−d +1 and rank distance d = n− k +1.

Equivalently, general constructions of MRD codes can be
described in terms of generator matrices. Let g1,g2, . . . ,gn
be a set of elements from the extension field Fqn linearly
independent over the base field F. Then a generator matrix
of the form

Gk =



g1 g2 . . . gn

gqs

1 gqs

2 . . . gqs

n

gq2s

1 gq2s

2 . . . gq2s

n

. . . . . . . . . . . .

gq(k−1)s

1 gq(k−1)s

2 . . . gq(k−1)s
n


.

defines an MRD (n,k,d) code with code length n ≤ N,
dimension k = n− d + 1 and rank distance d = n− k + 1.
The weight distribution of vector MRD codes coincides for
a given d with the weight distribution of Delsarte’s codes
above.

The case s = 1 is used mostly.
No other constructions of MRD codes are known.

C. Correcting random rank errors only

The ring Rn[x] of linearized polynomials with coefficients
in the extension field FqN consists of polynomials F(x) =
L
∑

i=0
fixqi

with operations: Addition in Rn[x] is defined by

F(x)+ G(x) =
L
∑

i=0
( fi + gi)xqi

; Symbolic multiplication is

defined by

F(x)⊗G(x) = F(G(x)) =
L1+L2

∑
i=0

∑
k+s=i

( fsg
qs

k )xqi
.

Let a code vector be v = (v1,v2, . . . ,vm), a received
vector y = v+e, where e = t1u1 + t2u2 + · · ·+ ttut . Unknown
elements ti ∈ FqN are linearly independent over the base
field F. Unknown n-vectors u1,u2, . . . ,ut ∈ FN

q are linearly
independent over F. The rank t is unknown.
The syndrome vector has the form

(t1u1 + t2u2 + · · ·+ ttut)H> = s = (s0,s1, . . . ,sd−2),
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where known syndrome coordinates are si =
∑

t
j=1 t jθ

qi

j , i = 0,1, . . . ,dr − 2. Introduce the linearized

syndrome polynomial by S(x) =
d−2
∑

p=0
spxqp

. Denote by

T (x) the linearized polynomial, whose roots are all
the possible linear combinations of t1, t2, . . . , tt with

coefficients in the base field F: T (x) =
t
∑

p=0
∆pxqp

, ∆t = 1.

Introduce the auxiliary linearized polynomial F(x) by

F(x) =
t−1
∑

p=0

p
∑

i=0
∆is

qi

p−ix
qp

. Solve the Key equation

F(x) = T (x)⊗S(x) mod xqdr−1
,

iteratively by the right Euclidean division algorithm with
initial values F−1(x) = xqdr−1

, F0(x) = S(x). The stop rule:
Continue calculations till i = t such that

degqFt−1(x)≥ d−1
2 ,

degqFt(x) <
⌊ d−1

2

⌋
.

Find the polynomial T (x). Find its linear independent roots
t1, t2, . . . , tt . Find {θi}. Find {ui}. Find the final error:

e = t1u1 + t2u2 + · · ·+ ttut .

D. Correcting rank errors and rank erasures

Let a MRD (n,k,d = n− k + 1) code V be given. Let a
transmitted signal be v and received signal be y = v+etotal,
where etotal is an error. The code V can correct in general
vector errors of the form

etotal = e+ erow + ecol

= e1u1 + e2u2 + · · ·+ etut+
+a1r1 +a2r2 + · · ·+avrv+
+w1c1 +w2c2 + · · ·+wlcl

provided that 2t + v+ l ≤ d−1.
The part e = e1u1 +e2u2 + · · ·+etut is called a random rank
error of rank t under assumption that elements ei ∈ FqN are
linearly independent over the base field Fq and unknown to
the decoder; n-vectors u1,u2, . . . ,ut have coordinates in the
base field Fq, are linearly independent over the base field
Fq and also unknown to the decoder. The rank t is unknown
to the decoder.
The part erow = a1r1 + a2r2 + · · ·+ avrv is called a vector
rank row erasure with side information under assumption
that elements ai ∈FqN are linearly independent over the base
field F and known to the decoder; n-vectors r1,r2, . . . ,rv
have coordinates in the base field Fq, are linearly indepen-
dent over the base field Fq and unknown to the decoder.
The part ecol = w1c1 + w2c2 + · · ·+ wlcl is called a vector
rank column erasure with side information under assump-
tion that elements wi ∈ FqN are linearly independent over

the base field Fq and are unknown to the decoder; n-
vectors c1,c2, . . . ,cl have coordinates in the base field Fq,
are linearly independent over the base field Fq and known
to the decoder.

First fast correcting random rank errors only was proposed
in [3]. The algorithm is based on the extended Euclidean
division algorithm for linearized polynomials. There exist
several further modifications.

Algorithms for correcting random rank errors and rank
erasures simultaneously are proposed in [4], [5], [7].

III. APPLICATIONS

A. Rank codes as space-time codes

Space-time codes are introduced by Tarokh, Jafarkhani,
and Calderbank in 1998 [10]. Codes are designed to si-
multaneously take advantage of two dimensions, namely
the spatial diversity of antenna elements, and coding gain
introduced by designed redundancy in the time dimension.

It is assumed that the base station is equipped with T
transmit antennas and the terminal is equipped with m
receiving antennas. A signal is transmitted in time slots
1,2, . . . ,n.

The received signal can be written as a m×n matrix

Y = AC+N.

C is a T × n signal code matrix with entries in some
constellation.

A is a m×T matrix of complex transfer coefficients from
the jth transmit antenna to the ith receiving antenna.

N is an AWGN m×n matrix.
The Full rank criterion was proposed:
Choose a matrix code C = {Ci} in such a manner that

the difference Ci, j =
{

Ci−C j
}

has full rank.
MRD codes over finite fields can not be used directly as

space-time codes. However, it is still possible to use MRD
codes over finite fields as templates. Known results in this
direction are as follows [11].

Non-constructive statement. There exist infinitely many
of finite complex or real constellations such that differential
MRD codes (i.e. full rank of difference matrices) can be
constructed.

Constructive statements.
1) MRD codes over the binary field can be transformed

to differential MRD codes over the complex or real
constellations of size 2.

2) For T = 2,4,8 and q = 2s, MRD codes over Fq can be
transformed to differential MRD codes over complex
constellations of size q.

3) MRD codes over Fp, p ≡ 1 mod 4, can be trans-
formed to differential MRD codes over the complex
Gaussian field of size p.

Decoding differential MRD codes is reduced to decoding
in finite field by hard-decision algorithms.
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B. Rank codes in network coding

Consider a communication network, where a single source
transmits information to a single destination. The model of
a network was proposed and investigated in [4]. The source
formats the information to be transmitted into N packets
X(1), . . . ,X(N) of length N +n over the finite field Fq and
constructs a (N× (N + n)) matrix X with these packets as
rows. The source choose a code X consisting of matrices X
which can be transmitted.

Each intermediate node calculates random linear combi-
nations of ingoing packets, where a packet is represented as
an element of a finite field FqN+n . The node retransmits ran-
domly calculated packets. Therefore, the destination collects
a random number Nr of packets Y (1), . . . ,Y (Nr) of length
N +n and creates a Nr× (N +n) matrix Y .

The problem is to recover the original packets
X(1), . . . ,X(N), or the matrix X from the received matrix
Y .

Köetter and Kschischang [6] introduce the concept of
subspace codes when an alphabet of transmitted messages
consists of subspaces, not symbols. They constructed a fam-
ily of subspace codes. Silva, Kschischang, Koetter, proposed
a rank-metric approach to error control in random network
coding [7]. Silva and Kschischang proposed their algorithms
of fast encoding and decoding of Gabidulin codes [8].

The basic model of a channel induced by random network
coding is described as follows. The transmitted matrix X
and the received matrix Y are connected by the relation
Y = AX + BZ, where A is an Nr×N matrix corresponding
to the overall linear transformation applied by intermediate
nodes of the network; Z is an l × (N + n) matrix whose
rows are the error packets z1, · · · ,zl ; B is an Nr× l matrix
corresponding to the overall linear transformation applied to
z1, . . . ,zl on route to the destination. The number of nonzero
rows of Z gives the total number of corrupt packets injected
in the network. Random matrices A, B, Z are unknown to
the destination.

It is proposed to apply so called lifting construction
for constructing a code X. Each matrix X ∈ X has the
form X =

[
IN M

]
, where IN is the identity matrix of

order N while M ∈ M is a code matrix of some matrix
code M consisting of N× n matrices over the field Fq. A
code M is assumed to be a MRD rank code with rank
distance d, if n ≤ N, or a transposed MRD rank code, if
N < n. The corresponding code X that was analyzed in
the basic model of a channel induced by random network
coding is described as follows. The transmitted matrix X
and the received matrix Y are connected by the relation
Y = AX + BZ, where A is an Nr×N matrix corresponding
to the overall linear transformation applied by intermediate
nodes of the network; Z is an l × (N + n) matrix whose
rows are the error packets z1, · · · ,zl ; B is an Nr× l matrix
corresponding to the overall linear transformation applied to

z1, . . . ,zl on route to the destination. The number of nonzero
rows of Z gives the total number of corrupt packets injected
in the network. Random matrices A, B, Z are unknown to
the destination.

It is proposed in [7] to apply so called lifting construction
for constructing a code X. Each matrix X ∈X has the form
X =

[
IN M

]
, where IN is the identity matrix of order N

while M ∈ M is a code matrix of some matrix code M

consisting of N× n matrices over the field Fq. A code M

is assumed to be a MRD rank code with rank distance
d, if n ≤ N, or a transposed MRD rank code, if N < n.
The corresponding code X was analyzed in [7]. Decoding
codes X can be reduced to decoding embedded rank codes
M. If the matrix X =

[
IN M

]
is transmitted, then the

matrix Y = AX + BZ =
[
A+BZ1 AM +BZ2

]
is received

with matrices A,B,Z1,Z2 unknown to the destination. By a
linear transformation of rows and injecting all zero rows, the
part

[
A+BZ1

]
can be reduced to the upper triangular matrix

of order N. Elements of the main diagonal are ”0”’s or ”1”’s.
The number of ”1”’s is equal to the rank of

[
A+BZ1

]
.

The same operations over the matrix
[
AM +BZ2

]
allows

to extract the submatrix of the form R = M + LM + DC,
where R, L and C are known matrices. Thus, the result is
a matrix M of the rank code M corrupted by a row rank
erasure LM and a column rank erasure DC. The unknown
matrix M can be uniquely recovered from R provided that
Rk(L)+Rk(C)≤ d−1.
Other network codes are known generalizing constructions
above (see, [9]). Decoding codes X can be reduced to
decoding embedded rank codes M. If the matrix X =[
IN M

]
is transmitted, then the matrix Y = AX + BZ =[

A+BZ1 AM +BZ2
]

is received with unknown to the
destination matrices A,B,Z1,Z2. By a linear transformation
of rows and injecting all zero rows, the part

[
A+BZ1

]
can be

reduced to the upper triangular matrix of order N. Elements
of the main diagonal are 0’s or 1’s. The number of 1’s is
equal to the rank of

[
A+BZ1

]
. The same operations over

the matrix
[
AM +BZ2

]
allows to extract the submatrix of

the form R = M + LM + DC, where R, L and C are known
matrices. Thus, the result is a matrix M of the rank code
M corrupted by a row rank erasure LM and a column
rank erasure DC. The unknown matrix M can be uniquely
recovered from R provided that Rk(L)+Rk(C)≤ d−1.
Other network codes are known generalizing constructions
above [9].

It is shown that decoding this subspace code is equivalent
to correcting random errors and generalized erasures in the
rank code [5].

C. Rank codes in cryptography

The McEliece like public key cryptosystem but based on
rank error correcting codes was proposed by Gabidulin,
Paramonov, Tretjakov in 1991 [12]. The cryptosystem is
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described as follows. The public key Gpub is a left and right
scrambled generator matrix of a rank code:

Gpub = SGkP.

The matrix Gk is used to correct rank errors of rank not
greater than t =

⌊ n−k
2

⌋
.

A matrix S over the extension field Fqn is called the row
scrambling matrix. It is used to destroy any visible structure
of the matrix Gk by mixing its rows.
A matrix P =

[
pi j
]

is called the column scrambler. This
matrix is a non singular square matrix of order n. It is used
to mix columns of Gk.

Another generator matrix has the form

Gpub = S
[
X Gk

]
P.

Plaintext is any k-vector

m = (m1,m2, . . . ,mk),ms ∈ Fqn , s = 1,2, . . . ,k.

Private keys are matrices S,Gk,X,P separately and (explic-
itly) a fast decoding algorithm of an MRD code.
Encryption.The ciphertext is given by

c = mGpub + e = mS[X|Gk]P+ e,

where e is an artificial vector of errors of rank t2.
Decryption. The legitimate receiver upon receiving c calcu-
lates

c′ = cP−1 = mS[X|Gk]+ eP−1.

Then he extracts from c′ the plaintext m using decoding
algorithms and properties of public keys.
Attacks and counter-attacks. Rank codes are well structured.
It makes easier creation of attacks.

Subsequently in a series of works, Gibson [13], [14],
[15] developed attacks that break the system for practical
instances.

Several variants of PKC were introduced to withstand
Gibson’s attacks [16].

Recently, R. Overbeck [17], [18] proposed a new attack
which is more effective than Gibson’s attacks. His method
is based on the fact that a column scrambler P is defined
over the base field.

It was found [19], [20] that a cryptographer can define a
proper column scrambler over the extension field without
violation of the standard mode of the PKC. Overbeck’s
attack fails in this case.

IV. CONCLUSIONS

Theory of rank codes is of great interest for many
researchers. Fast decoding algorithms are developed. Ap-
plications in many areas are possible and recommended.
Space-time coding, random network coding, public key
cryptosystems are areas of such applications.
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