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Distributed Approach for Joint Symbol and Channel
Estimation in Heterogeneous Cellular Networks

Igor F. S. de Sousa, André L. F. de Almeida and Tarcisio F. Maciel

Abstract— This work considers the uplink of a multiuser
heterogeneous cellular network based on direct-sequence code
division multiple access (DS-CDMA). Two cases are considered:
i) a centralized case, where a base-station (BS) gathers the
information of all users; and ii) a distributed case, where micro-BS
nodes perform the signal processing in a distributed fashion. A
distributed approach for data estimation and detection is studied
in this paper for the uplink of this heterogeneous network which
employs spreading codes at the transmitters and consensus-based
averaging at the micro-BS nodes. We compare the distributed
and centralized approaches considering, in both cases, a receiver
structure based on a joint trilinear tensor model for channel
gains, spreading codes and transmitted symbols of all users.
Numerical results show that the performance of the distributed
approach is superior to that of the centralized one.

Keywords— Distributed estimation, PARAFAC, DS-CDMA,
multiuser communication, consensus averaging.

I. INTRODUCTION

The interest in autonomous systems has grown in several
areas such as military communications and surveillance. In
the last years, the deployment of Wireless Sensors Networks
(WSNs) for collaborative monitoring, information processing,
and control has drawn considerable attention. Specifically,
WSNs can operate autonomously, i.e. without a data-fusion
center collecting and processing all measurements, thus
exhibiting desirable properties such as robustness against node
failure [1]. As there is no central controller, the cooperation
among nodes is necessary for estimating/detecting a common
system parameter or for taking reliable decisions and, in order
to maintain the coordinated action between the different nodes,
local information exchange is also needed.. The concept of
consensus averaging (CA) is used to achieve this cooperation.

In the downlink of a WSN, a distributed consensus problem
may be useful when some network nodes are interested in
a common message sent by a remote transmitter, but each
node has limited hardware-capabilities thus making it unable
to decode the message individually [2]. A few years ago, some
researchers have studied the distributed consensus problem
applied to communications systems [2]–[4]. Several theoretical
studies on the problem of iterative decoding of common
messages sent over broadcast channels to a pair of users
have been developed, for instance, in [4]. The optimal link
weights for fast convergence of CAs was designed by Xiao
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and Boyd in [5]. Some other works developed algorithms
which take advantage of collaboration among more than two
nodes [6]. The CA problem in networks with random link
failure has been analyzed by some authors assuming noiseless
consensus [7], [8]. Differently, Zhu et al [3] have considered
the demodulation, detection and estimation problem using
CA-like single iteration consensus averaging (CA-SI) and
consensus averaging variant based in method of multipliers
(CA-MoM), where they consider algorithms that are robust to
both random link failure and noisy consensus.

In recent years, a few works based on cooperative wireless
networks have been developed using tensor-based estimation
algorithms [9], [10]. In [10] a supervised technique was
proposed for two-way relaying cooperative systems, where the
relay node is assumed to operate with multiple antennas. A
distributed tensor-based receiver is proposed in [9] for joint
channel estimation and detection in a DS-CDMA based WSN.

In this work, we present a distributed data estimation
and detection approach for the uplink of a multiuser
heterogeneous cellular network which employs DS-CDMA
at the transmitters (users) and consensus-based averaging at
the receivers (micro-BS nodes). The micro-BS nodes are
supposed to cooperate to jointly recover users’ transmitted
signals in a distributed way, i.e., without the help of a
central base-station (BS). This cooperation allows the use of a
distributed Alternating Least Squares (D-ALS) algorithm that
exploits the Parallel Factor (PARAFAC) model [11], [12] of
the overall data gathered by the network for a joint in-network
channel estimation and symbol detection. We then compare the
distributed estimation approach with a centralized one, where
a central base-station (BS) gathers the information of all users.

Notation and Properties: the following notation is used
throughout the paper: Scalar are denoted by lower-case
letters (a, b, . . . ), vectors and matrices are written as boldface
lower-case (a,b, . . . ) and upper-case letters (A,B, . . . )
respectively. Tensors are denoted by calligraphic upper-case
letter (A,B, . . . ). Ai. and A.j denote, respectively, the ith row
and the j th column of the I × J matrix A. The transpose
of a matrix is denote by A

T whereas A
H stands for its

conjugate transpose. 1 is a column vector with all the elements
equal to 1. IN denotes the N × N identity matrix. The
Kronecker and Hadamard product are denoted by ⊗ and ⊙,
respectively. Frobenius norm is denoted by ‖.‖F . The pseudo
inverse operator is (·)†, while diag(·) is the operator that forms
a diagonal matrix from vector argument. vec(·) forms a vector
by stacking the columns of its matrix argument. Xk.. is the kth

slice of tensor X in K dimension, X.p. is the pth slice of tensor
X in dimension P and X..n is the nth slice of tensor X in
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dimension N for X ∈ CK×P×N . The Katri-Rao (columnwise
Kronecker) product between two matrices A ∈ CK×R and
B ∈ CJ×R is symbolized by A ⋄B can be defined as

A ⋄B =







Bdiag(A1.)
...

Bdiag(AK.)






∈ C

KJ×R. (1)

For any matrices A, B and X, we can be rewrite the
vec(AXB) as [13]

vec(AXB) = (BT ⋄A)vecd(X), (2)

where vecd(X) indicates the vectorization which selects only
the diagonal elements of matrix X.

II. TENSOR PREREQUISITES

We can decompose a third-order tensor X ∈ CI1×I2×I3

using the Parallel Factor (PARAFAC) decomposition [12], also
known as Canonical Decomposition (CANDECOMP) [11],
can represent X in scalar form as

xi1,i2,i3 =

Q
∑

q=1

u
(1)
i1,q

u
(2)
i2,q

u
(3)
i3,q

(3)

where U
(l) = [u

(l)
il,q

] ∈ CIl×Q|l=1,2,3.
It is possible to see that (3) admits a Q-component

PARAFAC decomposition [12]. Therefore, the data tensor is
completely characterized by three factor matrices U(l)|l=1,2,3.
Due to the uniqueness property of the PARAFAC model, if the
decomposition is essentially unique then, the sets of matrices
{U(1), U

(2), U
(3)} and {Ũ(1), Ũ

(2), Ũ
(3)}that give rise to

same tensor X are linked by

Ũ
(1) = U

(1)
Π∆1, Ũ(2) = U

(2)
Π∆2, Ũ

(3) = U
(3)

Π∆3,
(4)

where ∆1, ∆2 and ∆3 are Q × Q diagonal matrices
that scale/counter-scale the columns of U

(1), U(2) and U
3,

respectively, with ∆1∆2∆3 = IQ, and Π is a Q × Q
permutation matrix.

A sufficient condition for a PARAFAC decomposition to
provide unique parameter estimates (up to column scaling
and permutation) was earlier established in [14] for the real
numbers case, and later, extended by Sidiropoulos and Bro
[15] for the complex numbers case. This condition, known
as Kruskal condition, is given κU(1) + κU(2) + κU(3) ≥
2(Q+1), where κU(1) , κU(2) and κU(3) are the Kruskal-rank
of the factor matrices U

(1), U
(2) and U

(3). In order to
ensure Kruskal condition it is necessary that the dimension
of the system matrices follow min(I1, Q) + min(I2, Q) +
min(I3, Q) ≥ 2Q+ 2.

For a tensor X ∈ C
I1×I2×I3 , we can be define Xi1.. as

i1-th matrix slice in first mode of X given [16]

Xi1.. = U
(2)diag(U(1)

i1.
)U(3)T . (5)

When the matrix slices (5) are stacking in the same dimension
we obtain the matrix unfolding, X1 =

[

X
T
1.., . . . ,X

T
I1..

]T
∈

CI1I2×I3 , in first-mode and matrix unfolding, X2 =
[

vec(XT
1..), . . . , vec(XT

I1..
)
]

∈ CI2I3×I1 , in second-mode.
Using properties (1) and (2), respectively, we have following
equalities

X1 =
(

U
(1) ⋄U(2)

)

U
(3)T , (6a)

X2 =
(

U
(2) ⋄U(3)

)

U
(1)T . (6b)

III. SYSTEM OVERVIEW AND SIGNAL MODEL

Consider a cell which has a single BS, Q co-channel
users and B clusters of micro-BS nodes. Each cluster has
K micro-BS nodes. Both user equipment (UE) and micro-BS
nodes are single-antenna devices. The micro-BS nodes may
serve UEs in order to improve performance, e.g., in terms
of cell coverage and system capacity. Figure 1 illustrates a
possible configuration of the described cell.

UE

Micro-node

RBS

Rm

Fig. 1. Cell configuration, with RBS is radius of BS cell and Rm is radius
of the micro-BS node cell.

We assume that the UEs may communicate with BS in a
direct manner or by using a cluster of micro-BS node. The
UEs transmit their information to the micro-BS node or to
the BS antenna using direct-sequence code division multiple
access (DS-CDMA) through a flat Rayleigh fading channel
with zero-mean additive white Gaussian noise (AWGN).
Data exchanges among micro-BS nodes are considered to be
error-free. The baseband signal received at each antenna (from
the BS or a micro-BS node) is sampled at the chip rate and
decomposed into its polyphase components. Using (3), the
signal received at the kth antenna, nth symbol and pth is given
by

xk,p,n =

Q
∑

q=1

ak,qcp,qsn,q, (7)

where ak,q is the channel coefficient between UEq and
antenna k, cp,q and sn,q are the code of length P and the
nthsymbol of user q, respectively. In turn, each UE encodes
its information sequence [sn,q]n=1,...,N using the code cp,q
before transmission. By comparing (3) and (7), with following
correspondences:

(U(1),U(2),U(3))←→ (A,C,S), (8a)

(I1, I2, I3)←→ (K,P,N). (8b)
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Hence, by analogy with (6a) and (6b), Xi=1,2 can be written
as

X1 = (A ⋄C)ST , X2 = (C ⋄ S)AT (9)

There are two different manners that the tensor-based
processing can be performed: i) the centralized case, where the
BS gathers the information of all users, and ii) the distributed

case, where micro-BS nodes perform the signal processing in
a distributed fashion. In the former, each BS antenna receives
a copy of Xk.. and the BS can then build X for further
processing. In the latter, the micro-BS nodes form a network,
following some network topology, such that they estimate X
in a distributed fashion. Such a technique is now discussed.

IV. CONSENSUS AVERAGING ALGORITHM

The consensus averaging (CA) algorithm is based on
an iterative exchange procedure for solving a distributed
consensus problem. In [17], the author has introduced a CA
algorithm for describe a group might reach agreement for the
parameter by pooling their initial parameter in time-invariant
scenarios. However there are works where the time-varying
cases are dealt with, such as [18], [19].

The network analyzed in this work can be represented as
an undirected and connected1 graph G := {E, I}, where I :=
{1, . . . , I} denotes the set of nodes, and E ⊂ {I × I} is the
set of edges. Particularly, nodes in I represent the micro-BS
nodes and edges in E are related to the connectivity among
nodes, thus defining a list of neighborhoods. In other words,
each node has a list of neighbor nodes so that Ni ⊂ I is the
set of neighbors of node i.

A. Convergence conditions

Given each node i has a scalar value xi(t)|t=0 =
xi(0) as its initial state. Let us group the initial states
of the nodes in the vector at time t denoted by x(t) =
[

x1(t) x2(t) . . . xI(t)
]T

. The consensus update equation
for x(t) is given by

xi(t+ 1) =

I
∑

j=1

wijxj(t), (10)

where wij belongs to a non-negative stochastic matrix W

whose rows sum up to 1 each.. Thus, xi(t+ 1) is a weighted
average of xj(t) owned to nodes at time t. As an example of
matrix W, we have

wij =







1

δi
, if j ∈ Ni(t)

0, if j /∈ Ni

, (11)

where Ni = {j | (j, i) ∈ E} is the set of nodes j whose
values are taken into account by i at time t, while δi is the
degree2 of node i. We can rewrite (10) in matrix form as
x(t + 1) = Wx(t) and we can obtain x(t) = (W)tx(0) for

1A graph G is connected, in the sense of a topological space, when any two
nodes of the graph are connected through a path.

2Degree of a node i is the number of edges incident with i

all t. The weight matrix W must be chosen to ensure that with
the initial value x(0), x(t) will converge to the average vector
x̄ = m1, where m is the consensus value. Xiao and Boyd
have shown in [5] that necessary and sufficient conditions for
the convergence in the case of a fixed network are

W1 = 1, (12a)

1
T
W = 1

T , (12b)

ρ

(

W −
1

K
11

T

)

< 1, (12c)

where ρ(W) is the spectral radius of matrix W.
According to (12b), 1 is the left eigenvector of W, which

has a single nonzero eigenvalue equal to 1. This implies that
the average of all the estimates is conserved for all t, proving
that the final consensus value corresponds to the average of
x(0). In (12a), the consensus stability is guaranteed. This
implies that if x(tf ) = m̄1 = m̄, then x(t) = m̄, ∀ t > tf ,
m̄ is the result of consensus average. By satisfying all the
conditions given in (12), we guarantee that W has 1 as
eigenvalue, while all the other eigenvalues are significantly
smaller than one.

B. Local degree weights

There may be several matrices W that satisfy the conditions
ensuring the convergence of the estimates to m̄, but each
choice may have a different convergence rate. With the purpose
of speeding up the convergence, a judicious choice of the
matrix W is important. There are different algorithms to
accomplish this task.

Herein, we consider that each node can calculate its weight
locally from the knowledge of the connectivity degree of
its neighbors. This approach is known as “local degree
weighting”. We have:

wij =







1

max{δi, δj}
, if (i, j) ∈ E and i 6= j

0, if (i, j) /∈ E and i 6= j
, (13)

For satisfying the conditions in (12), we calculate wii as

wii = 1−
∑

j∈Ni

wij . (14)

V. ALGORITHMS

A. Bilinear alternating least squares

Various algorithms can be used for estimating the factor
matrices of a tensor X . Since the spreading code matrix C

assumed to known, we are concerned with the estimation
of S and A by exploiting the two matrix unfolding in (9),
respectively, this can be done using the Bilinear Alternating
Least Squares (BALS) algorithm. It combines by alternately
minimizing the following least squares cost functions in the
least square (LS) sense:
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Ŝ = argmin
S

‖X1 −YS
T ‖2F =

K
∑

k=1

‖Xk.. −YkS
T ‖2F ,

(15a)

Â = arg min
{A1....Ak.}

‖X2 − ZA
T ‖2F =

K
∑

k=1

‖vec(XT
k..)− ZA

T
k.‖

2
F .

(15b)

where Y = (A ⋄ C), using Yk = Cdiag(Ak.) and Z =
(C ⋄ S).

In Algorithm 1 we can see the summary of the BALS.

Algorithm 1 BALS
1) Set i = 0;
2) Initialize Â(i);
3) Use X1 to find an LS estimate of Ŝ(i):

Y = (Â(i) ⋄C);
Ŝ(i) = [(YH

Y)−1
Y

H
X1]

T ;
4) i = i+ 1;
5) Use X2 to find an LS estimate of Â(i):

Z = (C ⋄ Ŝ(i));
Â(i) = [(ZH

Z)−1
Z

H
X2]

T ;
6) Repeat steps 3-4 until convergence.

The convergence is achieved when the error described in
(15) at the ith iteration does not substantially change between
iteration i and i + 1. Moreover, in this work we use random
initializations for matrices A and S.

B. Distributed Bilinear Alternating Least Squares

In this work, we developed a Distributed Bilinear
Alternating Least Squares (D-BALS) algorithm relying on the
D-ALS algorithm derived by Kibangou and de Almeida in [9].
We have one consensus estimation case, which corresponds to
estimate the symbol matrix S.

An estimate of S can be obtained by (15a). Thus, we can
obtain S as

Ŝ
T =

(

1

K

K
∑

k=1

Y
H
k Yk

)−1(

1

K

K
∑

k=1

Y
H
k Xk..

)

, (16)

where, using property (1), we have Yk = Cdiag(Ak.).
Then, we have to consider two average consensus problems,
Γk(0) = Y

H
k Yk and Θk(0) = Y

H
k Xk... Using (2) in (15b)

we can locally estimate A as Â
T
k =

(

C ⋄ Ŝk

)†

vec(XT
k..).

Algorithm 2 summarizes the D-BALS.

VI. SIMULATION RESULTS

In this section, computer simulation results are provided for
the performance evaluation of the proposed receive algorithm
in some selected system configurations. We consider a scenario
similar to that described in Figure 1, where we have a single
BS with K antennas, K micro-BS nodes , and Q users are
drawn in the area covered by the micro-BS nodes’ cluster.
The BS use the BALS algorithm (centralized case) and the

Algorithm 2 D-BALS
1) For k = 1, . . . ,K:

Initialize Âk ∈ C
1×Q;

Compute Yk = Ckdiag(Âk),
Γk(0) = Y

H
k Yk and Θk(0) = Y

H
k Xk..;

2) Run the consensus algorithm for Γ and Θ:
For t = 0, 1, . . . , T − 1,
Γk(t+ 1) = Γk(t) +

∑

j∈Nk

wk,j(Γj(t)− Γk(t)).

Θk(t+ 1) = Θk(t) +
∑

j∈Nk

wk,j(Θj(t)−Θk(t)).

3) Set Γk(0) = Γk(T ) and Θk(0) = Θk(T ).
4) Compute the local estimates of S:

Ŝk = Γ
−1

k (0)Θk(0);
5) Compute local estimates of the channel:

Â
T
k =

(

C ⋄ Ŝk

)†

vec(XT
k..);

6) Return for step 2 until convergence.

TABLE I

SIMULATION PARAMETERS

# of BS antennas / micro-BS nodes K 3,4,5
Code’s length P 12

Number of symbols per UE N 100
Transmitter antennas (users) Q 12

Modulation 4QAM
Monte Carlo runs 2000

SNR0 -6 dB to 30 dB
Consensus iterations 4

Connectivity topology Ring (degree equal to 3)
BS cell radius 1000-2000m

Micro-node cell radius 200m

micro-BS node’s cluster use D-BALS (distributed case). In our
simulations, we consider the parameters described in Table I.
The results are obtained by an average over a large number of
independent Monte Carlo runs, where each run corresponds to
a redrawn a users’ position, transmitted symbols and channel
matrix given A = A

(R) ⊙ A
(G), where A

(R) = [a
(R)
k,q ] is

small-scale channel matrix, A(G) = [a
(G)
k,q ] is the large-scale

channel matrix, and additive noise. Our goal is to evaluate the
impact of path gain in both centralized and distributed cases.
As previously mentioned, we consider that data exchanges
among micro-BS nodes are error-free.

The path gain coefficients are obtained following the
simplified path-loss model [20] described in (17).

PL(d) = 20 log10

(

λ

4πd0

)

− 10γ log10

(

d

d0

)

in dB, and

G(d) = −PL(d) in dB.
(17)

where PL(d) represents the path-loss for distance d(in meters)
between receiver and transmitter, d0 is reference distance, λ
is the wavelength, γ is path-loss exponent and G(d) is the
path-gain. In this work is considered d0 = 20m, fc = 2Ghz.

The SNR0, in Table I, is given by SNR0 = ¯SNRnode, where
¯SNRnode is the average received signal-to-noise ratio (SNR)

for all nodes. Then, the ¯SNRBS is given by ¯SNRBS = SNR0−
∆PL, where ∆PL = P̄LBS− P̄Lnode, where PLa represents
the path-loss for a = BS, node.

Figure 2 shows the average of bit error rate (BER)
versus the SNR0 in dB scale, when the BS radius assumes
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Fig. 3. Average ALS error.

different values. It can be seen that the distributed processing
improves significantly, the BER performance when compared
to centralized one. This occurs because the distance between
UEs and BS is greater than the distance between UEs and
micro-BS nodes. Thus the channel in centralized case link has
gain smaller than in the distributed case. Therefore the BS has
more difficulty to demodulate the signal.

In Figure 3(a), we can evaluate the convergence of
Alternating Least Squares (ALS) algorithms in centralized and
distributed cases with same parameter of simulation result in
Figure 2. As the previous result, we can see that distributed
case has better values than the three distinct configurations
of centralized case. It occurs because the difference in
received signal power for both cases. Figure 3(b) shows the
comparative of the convergence of ALS to distinct number of
micro-BS nodes. We have better values when we increase the
number of nodes. With the increased number of nodes, we
increase the spatial diversity and it contributes to increase the
performance of the distributed algorithm.

VII. CONCLUSIONS AND FUTURE WORK

We compared the centralized and distributed cases in uplink
of a DS-CDMA system considering centralized and distributed
processing cases. We use a trilinear PARAFAC modeling for
composite received tensor in both cases, where our receiver
exploits space (first dimension), code (second dimension)
and time (third dimension) diversity for estimating the user’s

transmitted symbols and channels. This work has several
extensions, e.g.:

• The impact of the cell size on the convergence of the
centralized and distributed estimation approaches.

• The impact of different spatial distribuitions of the UEs
and micro-BS nodes.

• Computational complexity study of the proposes
algorithm or different nodes’ connection topologies.
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