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Abstract— Novel approximated expressions are derived for
the probability of miss of M -PSK signals at the output of
an energy detector subject to impulsive noise in generalized
fading channels. Monte Carlo simulation results corroborate the
proposed theorectical formulae.
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I. INTRODUCTION

Spectrum sensing is the primary technique for enabling
spectrum sharing among primary users (PUs) and secondary
users (SUs), such that SUs might exploit the spectrum oppor-
tunistically, i.e. without causing interference on PUs’ transmis-
sions. Thus, SUs must be able to distinguish (decide) whether
or not the spectrum is occupied. Among several techniques
for spectrum sensing, the energy detector has been widely
investigated, primarily because of its low-complexity and
reasonable performance even for severe fading channels [1].

This paper presents novel approximated expressions for the
probability of miss for M -PSK signals in generalized fading
channels, namely, κ− µ [2], η − µ [2], and α− µ [3], at the
output of the energy detector subject to impulsive noise.

The impulsive noise is modeled according a Bernoulli-
Gaussian (BG) channel. This channel has been investigated
due to its practical importance especially in multi-carrier
transmission systems based on orthogonal frequency division
multiplexing (OFDM) [4].

The probability of miss is approximated using the general-
ized Gauss-Laguerre quadrature method, which approximates
a class of integrals to a finite sum [5]. This approximation
presents an attractive alternative due to its low computa-
tional cost and high accuracy. Moreover, differently from
the assumption of the Central Limit Theorem, which has
been commonly used to approximate the expressions for the
probabilities of detection and false alarm [6], the proposed
approximation does not require a large number of samples in
order to become accurate, and therefore it does not compro-
mise the sensing time.

II. THE ENERGY DETECTOR

Consider the following hypothesis testing

H0 : Xn = Wn + C · Un, n = 1, 2, ..., N (1)

H1 : Xn = H · Sn +Wn + C · Un, n = 1, 2, ..., N (2)
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in which {Xn}Nn=1 is the received signal, {Wn}Nn=1 is an
i.i.d. circularly symmetric complex Gaussian process, i.e.,
{Wn}Nn=1 ∼ CN

(

0,σ2
W IN

)

, IN is the identity matrix of order
N , and H = RejΘ is the complex channel gain, in which R
is the envelope and Θ is the phase.

The impulsive noise is modeled according the Bernoulli-
Gaussian model, i.e., P (C = 1) = 1 − P (C = 0) = p
and {Un}Nn=1 ∼ CN

(

0,σ2
UIN

)

. Finally, Sn is a symbol
taken from an M -PSK constellation, which is assumed to be
uniformly distributed, i.e., P(Sn = s) = 1

M , s ∈ S, in which
S is the alphabet of Sn.

The well-known energy detection rule, used to decide
between the two aforementioned hypotheses, is defined as
follows

dλ(YN ) = I (YN ≥ λ) , (3)

in which YN !
∑N

n=1 |Xn|2, λ is a strictly positive real
number, I(·) is the indicator function, and dλ(YN ) = j, j ∈
{0, 1}, means that the detector has decided in favor of the
hypothesis Hj .

A. Hypothesis H0: Absence of transmitted symbol

Considering the hypothesis H0, one may show that the
cumulative distribution function of YN , for any y > 0, is

PYN
(y) = (1 − p)γ

(

N,
y

σ2
W

)

+ pγ

(

N,
y

σ2
W + σ2

U

)

, (4)

in which γ(·, ·) is the lower incomplete gamma function

defined as γ(a, z) ! 1
Γ(a)

z
∫

0
ta−1e−t dt.

B. Hypothesis H1: Presence of transmitted symbol

Given R = r, r > 0, one may show that the cumulative
distribution function of YN , for any y > 0, is

PYN |R (y|r) = 1−
[

(1− p)QN

(
√

2Nr2Es
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W

,

√

2y
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W

)

+pQN

(
√
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U

,

√

2y

σ2
W + σ2

U

)]

, (5)

in which Qa(·, ·) is the Marcum-Q function and Es is the
energy of an M -PSK symbol. Henceforth, define the signal-
to-noise ratio (SNR) as Es

σ2

W

and the signal-to-impulsive-noise

ratio (SIR) as Es

σ2

U

. In addition, it is assumed, without loss of

generality, that the energy of the PSK constellation is equal
to unity, so that Es = 1

M , allowing a fair comparison of the
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performance of the spectrum sensing system for different sizes
of PSK constellations.

Given an arbitrarily chosen threshold λ > 0, the probability
of false alarm PF and the probability of a miss PM may be
written as

PF ! P (dλ(YN ) = 1|H0) = 1− PYN
(λ), (6)

PM ! P (dλ(YN ) = 0|H1) =

∞
∫

0

PYN |R(λ|r)pR(r) dr, (7)

in which pR is the probability density function (pdf) of the
fading envelope R.

The threshold λ is selected based on the Neyman-Pearson
criterion, i.e., λ is the solution of (6) for a given probability
of false alarm. Unfortunately, it cannot be solved analytically,
however, since (6) is a strictly decreasing function of λ, it may
be inverted numerically.

The pdfs of the fading envelope considered for the deriva-
tions are those of η−µ (Format 2), κ−µ, and α−µ random
variables in their normalized forms.

III. THEORECTICAL RESULTS AND NUMERICAL ANALYSIS

The performance of the energy detector is determined once
the integral (7) is solved. However, to the best of the authors
knowledge, there is no closed form solution for (7), even in
special cases, for instance, when R is Nakagami distributed.
Hence, the generalized Gauss-Laguerre quadrature method is
applied to approximate the probability of miss (7).

Thus, (7) may be approximated as (8), (9), and (10), for
η − µ, κ− µ, and α− µ fading channels, respectively,

P η,µ
M ≈

√
π
(
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)µ
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2 )
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P κ,µ
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Pα,µ
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in which Lb
a(·) denotes the generalized Laguerre polynomial

of order a and parameter b (for appropriate values of a and b),
vk is the k−th root of Lb

K(·), and Iν(·) is the modified Bessel
function of first kind and order ν. Note also that the parameter
K accounts for the order of the Laguerre polynomial and the
number of terms in the sum.

As an example, consider the complementary receiver oper-
ating characteric (ROC) depicted in Fig. 1.

For the 8-PSK curves as well as for the 64-PSK, it can be
noted that, for PF < p, the pair of curves (p = 0.0 and p =
0.1) decay roughly with the same rate as PF increases, and
the difference between them remains approximately constant.
This fact is due to the influence of the impulsive noise on the
receiver. But, it may also be observed that, for PF > p, the
performace of the energy detector is significantly improved
and the effect of the impulsive noise is strongly reduced as
PF increases.

Therefore, while the η − µ fading impairs the spectrum
sensing performance of the energy detector as a whole, i.e,
for all values of PF , the impulsive noise effect turns out to be
negligible for PF > p.

The aforementioned observations are not particular of this
example, in fact, they were verified in several other simulated
scenarios of fading, impulsive noise, and signal to noise ratios.
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Fig. 1. Complementary ROC. Markers represent Monte Carlo simulation
with 106 realizations, while lines represent results from (8). Note that the
SNR and SIR were chosen such that the variances of the noises, σ2

W and
σ2
U , remained the same for each scenario.
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