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Speech Synthesis Based on Deep Neural Networks
with Direct Modeling of Amplitude Spectra

Ranniery Maia and Rui Seara

Abstract— In recent state-of-the-art text-to-speech systems,
usually a sequence of graphemes is directly mapped onto the
speech waveform using deep neural networks. Despite reaching
very high quality, these approaches tend to be computationally
costly at synthesis time and its training implementation is usually
not trivial. In this paper, a method which can be interpreted as
a simplified version of these systems is proposed. Here, frame-
based smoothed log spectra, fundamental frequency, and phase
information are modeled at training time, while synthesis runs in
a straightforward fashion. Experiments show that the proposed
approach outperforms traditional ones using acoustic modeling
of speech features.

Keywords— Deep learning, deep neural networks, speech syn-
thesis, text-to-speech (TTS) systems.

I. INTRODUCTION

Statistical parametric speech synthesis (SPSS) [1] presents
certain advantages when compared with the speech synthesis
approaches which use concatenation of phonetic units [2].
Among them, we can highlight the capability of synthesizing
speech with different voice styles through the manipulation of
the model parameters. Besides, text-to-speech (TTS) systems
based on SPSS can usually be built in an automatic way with
a small amount of heuristic procedures.

Recently, important advances in SPSS have been achieved
with application of deep learning [3]–[9]. The vast literature
shows that deep learning improves quality when compared
with state-of-the-art equivalent TTS systems based on hidden
semi-Markov models (HSMM) by means of better representa-
tion of speech signal parameters. It also increases flexibility in
terms of adaptation and creation of several voice styles. More
recently, methods based on the concept of direct modeling
of the speech waveform have been the trend, resulting in a
framework known as end-to-end speech synthesis [10]–[15].
Among those techniques, WaveNet [10] represents a major
breakthrough, since it has shown that deep convolutional
networks can effectively model sequences that present an
autoregressive structure, given past samples of the sequence
and some auxiliary parameters. Because WaveNet is basically
a general autoregressive network which can be used for any
sort of data, several methods have used WaveNet as a vocoder
where linguistic features are fed to the network as auxil-
iary features. Another breakthrough in the speech synthesis
field has occurred with the publication of Tacotron [11],
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which is an end-to-end approach that maps character embed-
dings (graphemes or phonemes) onto Mel log speech spectra.
Tacotron is basically a sequence-to-sequence architecture with
modified encoder and decoder. More recently, an improved
version of Tacotron [15] predicts speech spectrograms that are
fed to a WavNet module, finally turning into an actual end-to-
end synthesizer, with quality that is indistinguishable from that
of a human being. The main advantage of the use of end-to-end
systems regards the level of naturalness of synthesized speech,
which is higher than the current state-of-the-art approach based
on unit selection and concatenation [2]. In addition, greater
flexibility in terms of synthesizing different speech styles and
expressions. Such a flexibility can be achieved through the use
of style embeddings that are extracted by neural networks [16].
Therefore, despite apparently solving the TTS problem, these
end-to-end systems have in common one aspect: they are
computationally complex and one usually takes quite a lot of
empirical effort to reach the same results that are reported in
the papers. Besides, even the best quality TTS systems show
issues related to the time consumed to synthesize a single
sentence.

The idea proposed in this paper is located in a half-way
between traditional TTS methods (mapping between linguistic
features and acoustic parameters) and recent approaches that
outperform waveform concatenation systems, i.e., end-to-end
synthesis with direct speech modeling. The proposed idea here
has the advantage of being simple while maintaining a high
level of synthesized speech quality. In fact, similar techniques
have been proposed with the same purpose, see [17], [18].
In [17], speech amplitude spectra are directly modeled through
several layers of feed-forward neural networks. At the input,
aside from the usual linguistic features, the authors have
also used logarithm of fundamental frequencies, ln (F0), and
voicing decision (VUV). In [18], the authors replace the
acoustic features by amplitude and phase spectra on a warped
domain, together with ln (F0) and VUV. The disadvantage
of [17] is that an external prosody model is needed in order
to produce the network input at synthesis time. Our method
is similar to [18]. However, here we use the frame-based
modeling period, and to recover phase information at synthesis
time we use the anti-causal portion of the complex cepstrum
as phase feature [19].

This paper is organized as follows. Section II presents a
brief historical background of TTS systems based on deep
neural networks. Section III describes our TTS method which
is based on the direct modeling of log amplitude spectra with
phase recovery using anti-causal cepstrum. Experiments are
presented in Section IV and the conclusions are in Section V.
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Fig. 1. TTS approaches. (a) Conventional one based on the mapping between
linguistic and acoustic features. (b) End-to-end synthesis method with direct
waveform modeling.

II. SPEECH SYNTHESIS BASED ON DEEP LEARNING

The paper by Ling et al. [20] provides a very good historical
background on the application of deep learning to TTS. In
its simplest form, deep neural network (DNN) based TTS
(DNN-TTS) systems can be implemented by replacing the
typical decision trees from the HSMMs by feed-forward deep
neural networks, as proposed in [6]. Nowadays, one can
classify DNN-TTS methods into two categories. Conventional
approaches that rely on the one-to-one mapping between
linguistic features from text and acoustic features from speech;
and the end-to-end approaches, which are based on the infer-
ence of speech waveforms from input text. Fig. 1 presents an
overview on how both techniques work.

A. End-to-end Methods

Recent DNN-TTS approaches are based on the training
of layers of carefully elaborated neural networks, which
take as input phoneme or grapheme sequences (no need of
syllable, word, phrase information anymore) and as output
the speech signal, see [11], [14], [15]. These families of
synthesizers achieve the higher level of naturalness. For in-
stance, Tacotron [15] produces synthetic speech which is
indistinguishable to natural, reaching up the same level (or
even better than) unit concatenation-based systems.

In a probabilistic sense, training a TTS system can be
viewed as the problem of finding, in a maximum likelihood
sense, the optimal set of model parameters λ̂, so as

λ̂ = arg max
λ

p (X |W ,λ) p (λ) (1)

where X = {x0, . . . ,xT−1} is a sequence of segments1 of
the speech waveform, with xt =

[
xt(0) · · · xt(Nt − 1)

]>
being the tth frame or segment of speech, Nt the corre-
sponding number of samples and T the number of segments.
The set of vectors W = {w0, . . . ,wK−1} is a sequence of
graphemes, with wk =

[
wk(0) · · · wk(Mk − 1)

]>
denot-

ing the kth grapheme sequence, Mk the corresponding number
of graphemes and K the number of sequences. Operator [·]>
indicates matrix transposition. At synthesis time, graphemes
are fed to the trained neural network and the final speech
waveform is obtained. In a probabilistic view this is written
as

X̂ = arg max
X

p
(
X |W , λ̂

)
. (2)

Prior to the recent use of neural networks in TTS, some authors
tried to implement the end-to-end concept, sometimes regarded
as waveform models [21], [22].

B. Conventional Methods

Conventional TTS systems rely on the mapping between
linguistic features and acoustic parameters, in which a DNN
represents the probability of the acoustic features O given the
input linguistic parameters L, i.e.,

λ̂ = arg max
λ

p (O | L,λ) p (λ) . (3)

The set of vectors O = {o0, . . . ,oT−1} usually contain
speech acoustic parameters concatenated with their corre-
sponding dynamic features. Thus,

ot =
[
y>t ∆(1)y>t · · · ∆(D)y>t

]>
(4)

where yt is a vector containing parameters that can be used to
reconstruct the speech signal using parametric models [23] and
D is the dynamic feature order. The linguistic feature vectors
L = {l0, . . . , lT−1}, on the other hand, contain linguistic
features generated from the text database, in which each input
vector lt is composed of three sub-vectors, i.e.,

lt =
[
l
(b)
t

>
l
(n)
t

>
l
(d)
t

>
]>

(5)

with l
(b)
t , l(n)t , and l

(d)
t representing, respectively, binary,

numeric, and duration features. Note that in this approach
there is a one-to-one vector matching, in contrast to end-to-
end method, in which the number of grapheme sequences is
different from the number of speech segments or samples.

During the synthesis, a sequence of linguistic features is
generated from the text to be synthesized L = {l0, . . . , lT−1},
where T is the number of frames of the sentence to be
synthesized. Variable L is then fed to the DNN, so that in the
output it is produced another sequence of acoustic parameters,
i.e.,

Ô = arg max
O

p
(
O | L, λ̂

)
. (6)

Because Ô is assumed to be a sequence of stochastic means,
the final acoustic feature sequence is obtained by applying

1Another way to see this formulation is to assume a vector of speech
samples x> =

[
x(0) · · · x(N − 1)

]
, where in this case N is the

number of samples.
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one of the trajectory smoothing algorithms given in [24] on
Ô, taking into consideration the global variance, resulting
in the final acoustic feature sequence Ŷ = {ŷ0, . . . , ŷT−1}.
Lastly, the speech waveform is produced from Ŷ assuming a
parametric model of speech synthesis [23].

III. PROPOSED TTS METHOD

Our method is basically an improved version of the con-
ventional TTS systems [6] outlined in Section II-B. Instead
of using the acoustic features that are generally used in
the conventional approach, we model the log Mel smoothed
spectral envelope of speech, ln (F0), and voicing decision. In
addition, aiming to recover phase information, we add the anti-
causal portion of the complex cepstrum as a parameter in the
observation vector. Therefore, each vector ot becomes

ot =
[
St µt ln (F0,t) · · · ∆(D) ln (F0,t) φt

]>
(7)

where µt is the voicing decision (µt = 1 for voiced and µt = 0
for unvoiced) for the tth frame, and

St =
[
ln
∣∣Ht

(
eω̃0

)∣∣ · · · ln
∣∣Ht

(
eω̃P

)∣∣]> (8)

and
φt =

[
φt(1) · · · φt(C)

]>
(9)

are, respectively, vectors containing the Mel log smoothed
spectral envelope of speech with {ω̃0, . . . , ω̃P } being P
warped scale angular frequencies, and phase features. The
procedures of speech analysis and synthesis are discussed with
more details in the following. Regarding the parts of linguistic
feature extraction and statistical modeling, these procedures
are carried out in the same way as in conventional TTS
systems [6].

A. Speech Analysis

Training starts by extracting L and O from the database.
Linguistic features L = {l0, . . . , lT−1} are extracted from
text and generated at the frame level. The elements that
compose O can be derived by the following procedures: 1)
glottal close instant (GCI) detection [25]; and 2) complex
cepstrum analysis [19]. Through the estimation of the GCI,
{p0, . . . , pZ−1}, where Z is the number of GCI, detection of
the fundamental frequencies, {F0,0, . . . , F0,T−1}, and voic-
ing decisions, {µ0, . . . , µT−1}, can be obtained. Next, the
frequency response of speech s(n) at each instant pz is
determined by making

Hz (eω) =

pz+1∑

n=pz−1

s(n)j (n− pz−1) e−ωn (10)

where j(n) is an appropriate window to select s(n) between
pz−1 and pz+1. Finally, the complex cepstrum is calculated
by using

ĥz(n) =
1

2π

∫ π

−π
{ln |Hz (eω)|+ θz(ω)} eωndω (11)
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Fig. 2. Waveform generation from features derived from the DNNs.

where |Hz (eω)| and θz(ω) are, respectively, the amplitude
and continuous phase responses of s(n) at the instant pz . The
phase features at pz are given by

φz(n) = ĥz(−n− 1), 0 ≤ n < C. (12)

Note that even though ln |Hz (eω)| and φz(n) are extracted
pitch-synchronously, input-output mapping in the DNN during
the training can be made in a periodic frame-based fashion2. To
this end, pitch-synchronous parameters extracted at the instants
{p0, . . . , pZ−1} can be transformed into frame-based ones by
making

St = {Sz | pz ≤ tJ < pz+1} (13)

and
φt = {φz | pz ≤ tJ < pz+1} (14)

for t = 0, . . . , T − 1, where J is the frame duration in
number of samples. Note that (14) simply repeats vectors from
previous pitch to the next GCI.

B. Speech synthesis

Once Ô is estimated from the trained neural network,
synthesis is performed as shown in Fig. 2. Initially, the
estimated fundamental frequencies are used to generate the
synthetic pitch marks {p̃0, . . . , p̃Z−1}, and all parameters are
sampled at those time instances. Then, for each position p̃z , a
synthetic speech segment sz(n) is given by the convolution of
a minimum-phase impulse response hz(n) and an excitation
signal ez(n), both at instant pz , where

hz(n) =

{
exp

(
ĥz(0)

)
n = 0

∑C
k=1

k
n ĥz(k)hz(n− k) n ≥ 1

(15)

and

ĥz(n) =
1

2π

∫ π

−π
ln
(∣∣Hz

(
eω̃
)∣∣) eω̃dω, 0 ≤ n ≤ C (16)

with ln
(∣∣Hz

(
eω̃
)∣∣) being a generated Mel log spectral enve-

lope. On the other hand, the excitation signal in the frequency
domain Ez (eω) is all-pass with phase response given by
θz(ω) = θa,z(ω) + ϕz(ω). Component ϕz(ω) is zero when

2We use frame-based mapping because we utilize alignments provided by
HSMM to produce the linguistic feature vectors L = {l0, . . . , lT−1}.
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the voicing decision is one and random when it is zero, while
the residual phase θa,z(ω) is calculated from generated phase
features as

θa,z(ω) = −2

Ca∑

n=1

φz(n) sin (ωn) (17)

where Ca is the number of phase features.

IV. EXPERIMENTS

A. Experimental conditions

In order to test the proposed system, the database Constitu-
icao 1.0, supplied by the group FalaBrasil [26] was used. This
database consists of nine hours of audio sampled at 22.05 kHz
recorded in a controlled environment by a male speaker. Text
prompts are also provided alongside the corresponding audio.
From the total amount of data, five hours have been used in
our experiments. The process of database selection is similar
to that shown in [27].

The phonetic labeling of the database has been obtained
through a neural grapheme-phone conversion mechanism. Be-
sides the G2P part, the remaining linguistic features (syllable,
word, phrase, among others) have been derived from the
Festival Speech Synthesis system [28]. Pitch marking has
been carried out by SWIPE [29]. Pitch synchronous amplitude
spectra and phase features have been extracted from the speech
material using the method described in Section III, with P =
256 (Mel warped scale) and C = 19.

The neural network used to train the TTS system had two
layers of 1024 feed-forward units, two layers of 512 LSTM
units, and one output linear layer. All activation functions
are hyperbolic tangent. The linguistic features are normalized
between zero and one, while the outputs are normalized for
mean zero and variance one.

For comparison purposes, a baseline system is trained
under the same conditions, with the sole difference being the
features that populated the sequence O, which consisted of
45 Mel cepstral coefficients derived from pitch-synchronous
spectra, voicing decision, and fundamental frequency, with the
corresponding delta and delta-delta features aside from the
voicing decision. The generation part also takes into account
the speech parameter generation algorithm, which is typically
used in conventional TTS systems [24].

B. Objective analysis

The performance of the proposed and baseline systems have
been assessed by using the following metrics: log spectral
distortion (LSD), root mean squared of F0 (RMSF0

) in voiced
regions (difference of fundamental frequencies), and percent-
age of frames with wrong voicing decisions.

TABLE I
RESULTS OF THE OBJECTIVE EVALUATION

Conventional Proposed

LSD (dB) 7.51 7.42
RMSF0

(Hz) 20.11 20.64
PCVUV (%) 96.61 96.17

7.2 7.3 7.4 7.5 7.6 7.7 7.8

Conventional

Proposed

Log Spectral Distance (dB)

16 18 20 22 24

Conventional

Proposed

Root Mean Squared of F0 of Voiced Regions (Hz)

Fig. 3. Box-plot analysis of the samples used to calculate the medians
shown in Table I. Top: log spectral distance. Bottom: root mean squared of
fundamental frequency of voiced regions.
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Fig. 4. Short-time speech spectral envelope from natural, and speech
synthesized by conventional and proposed systems.

Twenty sentences have been used in the test, corresponding
to more or less ten minutes of recorded speech taken from the
same speaker. The final LSD is taken as the median of LSD
of all frames, while the RMSF0 is taken as the median of all
twenty sentences. The overall percentage of correct voicing
decisions (PCVUV) is taken as percentage of voicing decisions
from all frames. Table I shows the objective results for the test
set. It can be noticed that although the conventional method
achieves better results in terms of RMSF0 and PCVUV, these
differences are mostly insignificant in terms of quality. On the
other hand, a 0.1-dB difference in terms of LSD can have a
significant impact on the quality of the synthetic speech [23].
Fig. 3 shows a box-plot analysis of the samples that are used
to calculate the medians presented in Table I, where one can
notice the tendency of lower LSD in our proposed approach.
Fig. 4 shows short-term amplitude responses of natural and
synthesized speech for both conventional and proposed TTS
systems. It can be noticed that in this example the proposed
system produces an spectral envelope with peaks that are
closer to the ones present in the natural spectrum. That fact
indicates that synthesized speech may sound less muffled when
compared with the one generated by the conventional system.
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V. CONCLUSIONS

In this paper, we propose a TTS system in which Mel
log spectra is directly modeled as output parameter, together
with fundamental frequency and voicing decision. In addition,
to reconstruct phase information the anti-causal part of the
complex cepstrum is also modeled by the DNNs. The proposed
approach aims to synthesize speech with higher quality, close
to recent state-of-the-art systems. It also intends to keeping the
computational complexity at the same level as conventional
DNN-TTS systems, which are based on the modeling of
acoustic parameters and use a speech model to synthesize
the final waveform. Experiments showed that the proposed
approach outperforms the conventional approaches in terms
of log spectral distortion. Continuation of this project includes
switching from a one-to-one mapping between linguistic fea-
tures and amplitude spectra to a sequence-to-sequence map-
ping. By doing that, we shall give another step towards the
implementation of end-to-end systems.
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