Separação de modo de polarização em DP-MIMO com equalizador *Butterfly* apoiado por *beamforming*

César Druczkoski, Cynthia Junqueira, Adilson Chinatto e Rafael Ferrari

Resumo— Este artigo propõe o uso de conformadores de feixe LCMV e CMA como apoio para a separação de modo de polarização em sistemas *Massive MIMO*. Os conformadores de feixe são sucedidos por filtros do tipo *Butterfly* baseados em CMA, permitindo a recuperação de um sinal DP-QPSK com dispersão de modo de polarização. Estas configurações de filtragem se apresentam como uma modificação da utilização padrão de sistemas *Massive* MIMO, reduzindo a estrutura do equalizador e podendo ser estendida para outras geometrias de rede de antenas.

Palavras-Chave—Smart Antenas, Massive MIMO, Conformador de feixe, Frost, CMA, Butterfly

Abstract— This study proposes the use of LCMV and CMA beamformers as a support for the polarization mode separation in Massive MIMO systems. The beamformers are followed by CMA based Butterfly filters, allowing for the recovery of a DP-QPSK signal with polarization mode dispersion. These filter configurations are shown as a modification of the usual Massive MIMO, simplifying the equalizer architecture and extending this approach to other antenna array's geometries.

Keywords—Smart Antenas, Massive MIMO, Beamformer, Frost, CMA, Butterfly

I. INTRODUÇÃO

Nos anos 80, a introdução da primeira geração da tecnologia móvel iniciou a modificação do modo de pensamento da sociedade em relação à comunicação. Nos anos 90, o lançamento do *Global System for Mobile Communications* (GSM) aliou serviços de comunicação via mensagens curtas (SMS) e de multimídia (MMS). A evolução do GSM permitiu a introdução do *General Packet Radio Service* (GPRS) que levou a terceira geração (3G), trazendo um aumento significativo da taxa de dados. A comunicação móvel 3G gerou os padrões para serviços de telecomunicação em sistemas móveis, o chamado *International Mobile Telecommunications* (IMT-2000) incluindo *wide area wireless voice telephone*, acesso internet móvel, chamadas em vídeo e televisão móvel.

A quarta geração (4G) iniciou-se com o padrão *IMT-Advanced*, e levada ao público com serviços de *Long Term Evolution* (LTE), inicialmente em Estocolmo, via os sistemas de rede das empresas Ericsson, Nokia e Siemens e em Oslo, via o sistema da Huawei no final de 2009. A quinta geração (5G) com pesquisas iniciadas em 2011 e introdução esperada em 2020 permitirá o aumento de 1000 vezes em largura de

banda e 100 vezes em taxa de dados [1] e estará apta a cobrir grande variedade de aplicações das estações móveis futuras.

A 5G trará muitos desenvolvimentos e inovações e entre as tendências impactantes para seu avanço está o arranjo de antenas, a aplicação de sistemas em ondas milimétricas e os sistemas de *Massive* MIMO [2]. O conceito básico do sistema *Massive* MIMO é a aplicação de um conjunto de grande número de antenas na estação base para servir simultaneamente muitos terminais autônomos. É referenciado como a tecnologia mais competitiva para a aplicação na camada física sub-6GHz nos futuros acessos sem fio pois tem atrativas propriedades de propagação aliadas à maturidade de hardware na tecnologia para acesso de rádio. O *Massive* MIMO, ainda, traz benefícios relacionados à eficiência espectral juntamente com eficiência energética pela redução de potência radiada referenciada ao ganho do arranjo de antenas [3] [4].

Com esta motivação, neste artigo algoritmos adaptativos são aplicados em um arranjo de antenas linear uniforme, *uniform linear array* (ULA) formada por antenas de dupla polarização (vertical/horizontal) dispostas em um mesmo eixo e uniformemente espaçadas por $d = \lambda_0/2$, em que λ_0 é o comprimento de onda do sinal desejado. Um sinal desejado com modulação DP-QPSK bem como outros sinais indesejados incidem nesta rede e são filtrados por conformadores de feixe (*beamformers*) adaptativos. Após este estagio, os sinais das duas polarizações são equalizados por um equalizador MIMO para compensar a mistura dos sinais por efeito PMD.

Esta aplicação difere da utilização usual de um sistema *Massive* MIMO com M entradas e N saídas usando uma filtragem em dois estágios. Primeiramente, os conformadores feixe focam a rede nos sinais desejados e em seguida um equalizador MIMO separa estes sinais. Assim, simplificando o equalizador de um sistema $M \times N$ para um $N \times N$.

Na seção II são descritos os algoritmos utilizados para a conformação dos feixes. Na seção III é definido o sistema MIMO e sua utilização com diversidade de polarização. Na seção IV é descrito o algoritmo de equalização utilizado. Na seção V serão apresentados os resultados das simulações bem como as configurações de cada algoritmo utilizado. Por fim, na seção VI serão apresentadas a conclusões e estudos futuros.

II. REDES DE ANTENAS ADAPTATIVAS (SMART Adaptative Antennas)

Smart Adaptative Antennas são redes multifeixe ou de antenas adaptativas que rastreiam o ambiente *wireless*. Melhoram de forma significativa a performance de sistemas sem-fio aumentando o ganho do sistema em um fator equivalente ao

César Druczkoski, Cynthia Junqueira, Adilson Chinatto e Rafael Ferrari, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas-SP, Brasil e César Druczkoski, Cynthia Junqueira e Adilson Chinatto, Espectro Ltda., Campinas-SP, Brasil, E-mails: cesar.druczkoski@espectro-eng.com.br, cynthiaj@decom.fee.unicamp.br, chinatto@espectro-eng.com.br, rferrari@dca.fee.unicamp.br

número de antenas na rede, M, e permitem a supressão de um número M - 1 de sinais interferentes [5].

Redes de antenas adaptativas são formadas por grupos de antenas aliados a algoritmos de filtragem adaptativa, de forma a combinar os sinais recebidos por cada antena. Dado um arranjo de antenas, muitos tipos diferentes de algoritmos podem ser elencados para adaptar um conjunto de coeficientes deste arranjo [6]. A proposição supervisionada, como por exemplo o algoritmo de Wiener e outras técnicas não supervisionadas, como os algoritmo de Godard ou soluções que empregam restrições lineares podem, teoricamente, ser aplicadas.

A. Algoritmos com restrições lineares (LCMV)

Estes algoritmos ajustam os pesos do filtro que combina linearmente os sinais recebidos através da minimização da variância do sinal de saída do arranjo mediante a restrições lineares. Estas são relacionadas aos ângulos de chegada dos sinais incidentes e definidas de modo a preservarem somente os sinais desejados. Tal abordagem, comumente conhecida como *Linear Constrained Minimum Variance* (LCMV) [7], pode ser expressa por

$$C^H w = f, (1)$$

onde C[K, L] é a matriz de restrições para uma rede de antenas de K elementos e L restrições, w[K, 1] é o vetor de pesos do filtro espacial, f[L, 1] é o vetor de resposta das restrições lineares e H é o operador adjunto (conjugado hermitiano). Assim, a solução ótima é calculada como

$$W_{opt} = R_{xx}^{-1} C (C^H R_{xx}^{-1} C)^{-1} f, \qquad (2)$$

com R_{xx} sendo a matriz de autocorrelação do sinal de entrada.

1) Constrained Least Mean Square (CLMS): O CLMS funciona de maneira iterativa movendo os valores do vetor de peso na direção oposta ao gradiente da função custo, acrescida da função restrição pelo método dos multiplicadores de Lagrange [7]. É baseado no algoritmo Least Mean Square (LMS), estendendo a problemática do critério LCMV para sinais em que a solução ótima, w_{opt} , não pode ser calculada diretamente. O CLMS é também conhecido como algoritmo de Frost e baseia-se no seguinte conjunto de equações [8]

$$w(0) = F$$

$$w(n+1) = P(w(n) - \mu y(n)x(n)^{H}) + F$$

$$P = I - C(C^{H}C)^{-1}C^{H}$$

$$F = C(C^{H}C)^{-1}f,$$
(3)

em que x[KJ, 1] é o vetor do sinal de entrada, w[KJ, 1] o vetor de pesos do filtro, f[L, 1] o vetor de restrições lineares, μ o passo de adaptação, I a matriz identidade, C[KJ, L] a matriz de restrições e K, J e L o número de elementos da rede, atrasos e sinais, respectivamente.

B. Algoritmos não supervisionados

Algoritmos não supervisionados recuperam o sinal desejado sem a necessidade de sequências de treinamento ou restrições explícitas. Estes algoritmos geralmente possuem funções custo que, embora multimodais, apresentam mínimos correspondentes às soluções em que o sinal é recuperado. São conhecidos na literatura como Algoritmos de Bussgang [6].

1) Algoritmo de Godard: O algoritmo de Godard [9] é um caso particular dos algoritmos de Bussgang. Visa minimizar a função custo do desvio do sinal de entrada em relação ao módulo do sinal desejado, otimizando os pesos do filtro a cada iteração e mantendo a propriedade de módulo constante da constelação dos dados transmitidos. É conhecido também com o nome de *Constant Modulus Algorithm* (CMA) [10]. A adaptação dos parâmetros deste filtro se dá pela equação

$$w(n+1) = w(n) - \mu x(n)(|y(n)|^2 - r_p)y(n)^H$$

$$r_p = \frac{E[|s(n)^{2p}|]}{E[|s(n)^p|]},$$
(4)

em que w(n) é o vetor de pesos do filtro para uma rede de K elementos e com J atrasos, x(n) o vetor do sinal de entrada do filtro, y(n) o vetor do sinal de saída do filtro, μ o passo de adaptação e s(n) depende da modulação do sinal transmitido.

III. SISTEMA MIMO E POLARIZAÇÃO

Sistemas *Multiple-Input and Multiple-Output* (MIMO) utilizam-se de múltiplos transmissores e receptores. Este sistema alia técnicas de multiplexação espacial e diversidade, tais como diversidade de combinação, seleção de antena e conformador de feixe, aumentando a capacidade do canal [11].

As pesquisas que culminaram na tecnologia MIMO iniciaram-se na década de 1980. In 1984, J. H. Winters, do Laboratório Bell, escreveu uma patente sobre comunicação sem fio e múltiplas antenas. Publicou também um estudo sobre limites de taxas de dados para sistemas de múltiplas antenas num ambiente de fading do tipo Rayleigh [12]. Em 1993, Paulraj e Kailath propuseram o conceito de multiplexação espacial usando MIMO. No período entre 1986 e 1995 muitos artigos foram publicados com foco no conceito MIMO. O primeiro sistema MIMO comercial foi desenvolvido em 2001 pela empresa Iospan Wireless. Desde 2006 empresas como Broadcom e Intel têm concebido novas técnicas de comunicação baseadas na tecnologia MIMO para melhoria de eficiência de sistemas do tipo Wireless Local Area Network (WLAN). O padrão de wireless LAN IEEE 802.1n-2009 foi criado atraindo muita atenção para este tipo de sistema, sendo a tecnologia candidata quando da criação da quarta geração dos sistemas de comunicação sem fio.

O sistema MIMO pode ser descrito via um modelo matemático simplificado onde considera-se N_T antenas transmissoras e N_R antenas receptoras [13]. Sendo a relação de entrada e saída do sistema é definida por

$$y = Hx + b, (5)$$

onde H_{N_R,N_T} é a matriz complexa do canal da forma $H = [h_1, ..., h_{N_T}]$, sendo $h_k = [h_1k, ..., H_{N_R}k]^T$ e $p = 1, ..., N_T$ o vetor complexo do canal que liga as N_T antenas de transmissão as N_R antenas de recepção, $x = [x_1, ..., x_{N_T}]^T$ o vetor complexo do sinal transmitido, $y = [y_1, ..., y_{N_R}]^T$ o vetor complexo do sinal recebido e $b = [b_1, ..., b_{N_R}]^T$ o vetor

complexo do ruído aditivo. E assim, na antena receptora R_{x_q} , o sinal recebido é expresso segundo

$$y_q = \sum_{p=1}^{N_T} h_{pq} x_p + b_q \; ; \quad q = 1, ..., N_R.$$
 (6)

O sistema MIMO é encontrado na literatura em versões simplificadas com as seguintes definições:

- SIMO: Single-Input and Multiple-Output, onde o sistema de transmissão é composto de apenas 1 antena;
- MISO: *Multiple-Input and Single-Output*, onde o sistema de recepção é composto de apenas 1 antena;
- SISO: *Single-Input and Single-Output*, onde os sistemas de recepção e de transmissão têm apenas 1 antena.

Vale ressaltar que os sistemas MIMO têm sido muito investigados na literatura em relação a propriedades básicas, eficiência e vantagens em relação aos modelos simplificados. Em [14] é descrita a melhoria de ganho de taxa de transferência (*throughput*) em relação à sistemas do tipo SIMO.

Em sistemas de comunicação, com o objetivo de maior robustez em relação às variações do canal, técnicas de diversidade são comumente empregadas. Estas técnicas exploram as variações naturais do canal e buscam mitigar desvanecimentos (*fading*) e interferências presentes. Por exemplo, técnicas de diversidade combinadas podem ser utilizadas num receptor para explorar as características de multipropagação de um canal. Resumidamente, o termo diversidade pode ser categorizado como diversidade temporal, em frequência, de multiusuário, espacial e de polarização. A diversidade espacial, destinada a criar caminhos de propagação não correlacionados para um sinal, é construída pelo uso de múltiplas antenas num sistema de transmissão ou de recepção. Sistemas do tipo MIMO costumam usar esta técnica, mas ela não é a única que pode trazer melhor desempenho ao sistema.

Antenas transmitem sinais de acordo com sua polarização e o melhor desempenho de recepção acontece quando os sinais coincidem em polarização com o sinal transmitido. Os efeitos de polarização podem ser observados dos dois lados do enlace. É sabido que diversidade de polarização pode ser explorada para o aumento de desempenho de canais MIMO *outdoorindoor* e capacidade de canal de sistemas MIMO *indoor* [15].

Neste trabalho o foco será dado a técnicas de diversidade de polarização, comumente usados para mitigação de descasamentos de polarização das antenas de transmissão ou recepção. Neste esquema, múltiplas cópias do mesmo sinal são transmitidas e recebidas pelas antenas em diferentes polarizações.

No receptor os sinais que estão alinhados com a respectiva polarização da antena são recebidos e os desalinhados, são atenuados [16]. Porém como o meio de transmissão não é ideal, os sinais sofrem dispersão do modo de polarização, conhecida como *Polarization Mode Dispersion* (PMD). Assim, os sinais recebidos tornam-se combinação dos sinais transmitidos. Este inconveniente, porém, pode ser minimizado utilizando um equalizador baseado em técnica adaptativa desenvolvida para a compensação do efeito de PMD [17].

IV. EQUALIZADOR BUTTERFLY

Um equalizador *Butterfly* consiste em um grupo de filtros adaptativos que operam em conjunto e concorrentemente com

a função de compensar efeitos de mistura entre polarizações devidas à PMD. Como é um filtro adaptativo, baseia-se em um determinado critério para a atualização dos coeficientes. Neste trabalho, utiliza-se o critério do módulo constante (*constant modulus algorithm* – CMA) [18]. O algoritmo CMA funciona satisfatoriamente com sinais *quadrature-phase-shiftkeying* (QPSK) e apresenta bom desempenho mesmo para constelações de ordens superiores, como 16-QAM. Sua estrutura é formada por 4 sub-equalizadores, sendo que cada sub-equalizador corresponde a um filtro FIR, Figura 1.

Fig. 1. Estrutura do equalizador Butterfly.

A estrutura é atualizada conjuntamente segundo

$$H_{xx}(n+1) = H_{xx}(n) + \mu \varepsilon_x(n) x(n)^H$$

$$H_{yx}(n+1) = H_{yx}(n) + \mu \varepsilon_x(n) y(n)^H$$

$$H_{xy}(n+1) = H_{xy}(n) + \mu \varepsilon_y(n) x(n)^H$$

$$H_{yy}(n+1) = H_{yy}(n) + \mu \varepsilon_y(n) y(n)^H,$$
(7)

em que H_{xx} , H_{yx} , H_{xy} e H_{yy} são os vetores que contêm os coeficientes de cada um dos quatro filtros, μ é o passo de adaptação do algoritmo, e ε_x e ε_y são os erros dos sinais de entrada atualizados segundo o CMA, que seguem

$$\begin{aligned} x'(n) &= H_{xx}(n+1)x(n) + H_{yx}(n+1)y(n) \\ y'(n) &= H_{xy}(n+1)x(n) + H_{yy}(n+1)y(n) \\ \varepsilon_x(n+1) &= (r_p - |x(n)'|^2)x'(n) \\ \varepsilon_y(n+1) &= (r_p - |y(n)'|^2)y'(n), \end{aligned}$$
(8)

com r_p sendo o raio calculado a partir da equação (4) e x'(n) e y'(n) as saídas do equalizador.

V. EXPERIMENTOS E RESULTADOS

Para a aplicação experimental dos algoritmos estudados foi considerada uma rede de configuração ULA com 16 antenas, cada antena com dupla polarização, vertical/horizontal. O sinal desejado foi considerado um sinal DP-QPSK ($p = 2, |s(n)| = 2, r_2 = 4$) com metade dos símbolos transmitidos em polarização vertical e metade em polarização horizontal. Na recepção, os sinais foram misturados segundo

$$\begin{bmatrix} v'\\h' \end{bmatrix} = \begin{bmatrix} 9 & 1\\2 & 8 \end{bmatrix} \begin{bmatrix} v\\h \end{bmatrix}, \tag{9}$$

representando uma simplificação do efeito de PMD (sem memória), e corrompidos por ruído branco aditivo ($\sigma_v^2 = 0,1129$ e $\sigma_h^2 = 0,1127$), resultando em uma relação sinalinterferente (signal to interference ratio – SIR), calculado segundo Eq. 10, de 19 dB e 12 dB. Este sinal incide perpendicularmente à rede de antenas (DOA_d = 0°). Simultaneamente, outros 4 sinais indesejados sem modulação, gerados a partir da distribuição normal padrão ($\mu = 0 \text{ e } \sigma^2 = 1$) com um ganho escalar inferior a 1, incidem sobre o arranjo de antenas, com DOA_i = [-60°, -33°, 27°, 45°].

$$SIR_{v} = 20 \ \log_{10} \frac{\sigma_{desejado \ v}}{\sigma_{v'} - \sigma_{desejado \ v}}.$$
 (10)

Esta configuração segue o esquema apresentado na Figura 2, utilizando conformadores de feixe, LCMV e CMA, e um equalizador *Butterfly* 2×2 com os seguintes parâmetros:

- Conformador de feixe LCMV com 1 coeficiente por antena, $\mu = 10^{-5}$ e inicialização dada pela Eq. 3;
- Conformador de feixe CMA com 1 coeficiente por antena, $\mu = 10^{-4}$ e inicialização $w(1,1) = 10^{-2}$;
- Equalizador Butterfly com 3 coeficientes, μ = 10⁻⁴ e inicialização H_{vv} = H_{hh} = 1 e H_{hv} = H_{vh} = 0.

Fig. 2. Estrutura de filtragem utilizada.

Ambos algoritmos têm bom desempenho, como vemos nas Figuras 3 e 4, posicionando o lóbulo principal na direção do sinal desejado e nulos na direção dos sinais interferentes.

Fig. 3. Fatores de rede dos conformadores de feixe LCMV horizontal e vertical.

Um segundo conjunto de simulações foi realizado para avaliar o desempenho dos algoritmos utilizados quando o angulo de incidência de algum dos sinais interferentes se

Fig. 4. Fatores de rede dos conformadores de feixe CMA horizontal e vertical.

aproxima do DOA_d. Para tanto o sinal indesejado originalmente em 27° foi aproximado do sinal desejado variando 1° a cada iteração da simulação. Esta influência na eficiência de filtragem dos algoritmos utilizados é apresentada pela variação do *SINR* (*Signal-to-interference-plus-noise ratio*) dos sinais de saída dos conformadores de feixe e do equalizador *Butterfly* em função da proximidade de um sinal indesejado ao sinal desejado. Estes resultados são apresentados nas Figuras 5 e 6.

Fig. 5. Variação SINR dos sinais de saída dos conformadores de feixe LCMV e do equalizador *Butterfly* em função da proximidade de um sinal indesejado ao sinal desejado.

A proximidade de um sinal interferente ao sinal desejado diminui o desempenho dos conformadores de feixe utilizados. Percebemos uma queda considerável nos valores de SINR dos sinais de saída, em especial para valores abaixo de 5°. Este efeito se propaga para o equalizador, diminuindo sua eficiência, como vemos na Figura 5.

Como o algoritmo LCMV foca o feixe em uma direção escolhida, a proximidade do sinal interferente ao sinal desejado causa uma dominância dos sinais interferentes em relação ao efeito de PDM na formação do sinal de saída do *beamformer* LCMV. Isto resulta em um sinal sem módulo constante, que não atende o critério de filtragem utilizado para a equalização.

Em contrapartida, como o *beamformer* CMA não foca na direção do sinal de interesse e sim em um critério de módulo

Fig. 6. Variação *SINR* dos sinais de saída dos conformadores de feixe CMA e do equalizador *Butterfly* em função da proximidade de um sinal indesejado ao sinal desejado.

constante, sofre uma menor perda de desempenho com a aproximação do sinal indesejado, como vemos na Figura 6.

VI. CONCLUSÃO

Apesar do sistema apresentado, uma rede ULA com 16 antenas e somente 2 sinais desejados, ser muito mais simples que os arranjos usualmente utilizados em sistemas *Massive* MIMO fica claro o benefício da adição dos algoritmos conformadores de feixe. Esta estratégia reduz o estágio de equalização de um sistema com 32 entradas (16 verticais e 16 horizontais) e 2 saídas, 32×2 , para um sistema 2×2 , que foca somente na compensação do efeito de PMD.

Obviamente o esquema de filtragem proposto possui limitações. O *beamformer* LCMV depende completamente no conhecimento do *DOA* do sinal desejado. Assim é necessário o uso de algoritmos *DOA* ou outras estratégias que forneçam esta informação. O *beamformer* CMA por sua vez apresenta um baixo desempenho para cenários de alta mobilidade. Outra limitação deste algoritmo é quando os sinais interferentes possuem mesma modulação do sinal desejado. Isto implica no uso de algoritmos de *model matching* para separar todos os sinal de mesma modulação e assim encontrar o sinal desejado.

Estudos futuros incluem a extensão desta aplicação a geometrias mais complexa de grupos de antenas bem como o aumento do número de sinais e antenas. Isto permitiria uma aproximação maior de aplicações reais de *Massive* MIMO e assim uma comparação detalhada com sistemas *full*-MIMO.

REFERÊNCIAS

- [1] N. S. Networks, "2020: Beyond 4g radio evolution for the gigabit experience", *White Paper*, fev. de 2011.
- [2] F. B. e R. W. Heath e A. Lozano e T. L. Marzetta e P. Popovski, "Five disruptive technology directions for 5g", *IEEE Communications Magazine*, v. 52, n. 2, pp. 74–80, fev. de 2014.
- [3] E. B. e E. G. Larsson e T. L. Marzetta, "Massive mimo: Ten myths and one critical question", *IEEE Communications Magazine*, v. 54, n. 2, pp. 114–123, fev. de 2016.

- [4] T. L. M. e E. G. Larsson e H. Yang e H. Q. Ngo, Fundamentals of Massive MIMO, 1^a ed. Cambridge University Press, dez. de 2016, ISBN: 978-110-717-557-0.
- [5] J. H. Winters, "Smart antennas for wireless systems", *IEEE Personal Communications*, v. 5, n. 1, pp. 23–27, fev. de 1998.
- [6] S. Haykin, *Blind Deconvolution*. Prentice-Hall, 1994, ISBN: 978-013-087-362-0.
- [7] O. L. F. III, "An algorithm for linearly constrained adaptive array processing", *Proceedings of the IEEE*, v. 60, n. 8, pp. 926–935, ago. de 1972.
- [8] H. H. e S. Chang e S. Chen e C. Chang, "Real time implementation of frost beamformer for underwater communications", *Journal of Marine Science and Technology*, v. 7, n. 1, pp. 1–7, jun. de 1999, ISSN: 1023-2796.
- [9] D. N. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems", *IEEE Transactions on Communications*, v. 28, n. 11, pp. 1867–1875, dez. de 1980.
- [10] J. T. e B. G. Agee, "A new approach to multipath correction of constant modulus signals", *IEEE Transactions on Acoustics, Speech, and Signal Processing*, v. 31, n. 2, pp. 459–472, abr. de 1983.
- [11] H. K. Bizaki, *MIMO Systems Theory and Applications*. InTech, abr. de 2011, ISBN: 978-953-307-245-6.
- [12] J. H. Winters, "On the capacity of radio communication systems with diversity in a rayleigh fading environment", *IEEE Journal on Selected Areas in Communications*, v. 5, n. 5, pp. 871–878, jun. de 1987.
- [13] K. R. e M. B. Zid e N. Prayongpun e A. Bouallegue, "Mimo systems, theory and applications", em, H. K. Bizak, ed. InTech, 2011, cap. Advanced MIMO Techniques: Polarization Diversity and Antenna Selection.
- [14] A. E.-F. e S. Noghanian, "Mimo systems, theory and applications", em, H. K. Bizak, ed. InTech, 2011, cap. Semi-Deterministic Single Interaction MIMO Channel Model.
- [15] C. F. e E. Liu e M. U. Rehman, "Analysis of subchannel correlation in dual-polarised mimo systems via a polarisation diversity scheme", *IEEE Transactions on Antennas and Propagation*, v. 65, n. 5, pp. 2635–2644, mai. de 2017.
- [16] S. K. e T. Tsuruhara e M. Sakamoto, "Base station polarization diversity reception for mobile radio", *IEEE Transactions on Vehicular Technology*, v. 33, n. 4, pp. 301–306, nov. de 1984.
- [17] T. F. P. e D.V. Souto e V. N. Rozental e H. B. Ferreira e D. A. A. Mello, "Analysis of signal processing techniques for optical 112 gb/s dp-qpsk receivers with experimental data", *Journal of Microwaves, Optoelectronics and Electromagnetic Applications*, v. 10, n. 1, jun. de 2011.
- [18] S. J. Savory, "Digital filters for coherent optical receivers", *Optics Express*, v. 16, n. 2, pp. 804–817, jan. de 2008.