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Abstract— Congestion reduction is a critical element in almost
any system, and especially in those that are battery supplied and
provide critical services, such as in an uninterruptible power
supply of an emergency room in a hospital. In this work, we
analyze the impact of congestion reduction on the network
power consumption of battery-dependent devices. We built a
discrete-event simulation model of an IoT network, which was
analytically validated by Jackson networks, and quantitatively
showed through two case studies how power consumption may
be decreased in a network node by reducing congestion of the
network traffic. The model and its implementation serve as the
basis for the analysis of several scenarios that may support
the design, planning and dimensioning of future IoT networks
regarding traffic congestion. For existing networks, it may also
be used for detection or even prediction of future bottlenecks.
The analysis of the results indicates that a reduction in power
consumption in the overall network is achievable - which may
be used to extend the system’s lifetime.

Keywords— Jackson networks, Discrete event simulation, Ad-
Hoc networks, RFID

I. INTRODUCTION

Traffic congestion plays a critical role in the design of
battery-dependent devices and networks, since the networks
experience retransmissions at a large rate that may increase
power consumption and thus deplete battery sources more
quickly. Within this context, it is possible to elicit important
design issues for an IoT network: 1) How much traffic conges-
tion can the network tolerate, given a certain QoS requirement?
For such level of congestion, we may ask: 2) What is the power
consumption in an arbitrary network node (which allows us
to establish the duration of its battery/lifetime)? 3) What are
the congestion bottlenecks? 4) What is the traffic arrival rate
that eliminates such bottlenecks? and 5) What is the processor
service rate that eliminates such bottlenecks?

The methodology that seeks to answer these questions - and
that is pursued in this work - is the following:

1) Construction of the discrete event simulation (DES)
model for the complete system (Fig. 1, Table I, Section
III);

2) Validation of the DES model, e.g. using the analytical
model (Jackson network) (Section V, [1]);

3) Congested network evaluation: The identification of bot-
tlenecks is a plus in this step (Case 1, Section IV-A);

4) Uncongested network evaluation (Case 2, Section IV-B);
5) Calculation of the variation in traffic (∆ Erlang, Section

IV);
6) Estimation of reduction in power consumption from

∆ Erlang using the equations/models (Watt/Erlang) for
several different technologies (Section V).

The contribution of this work lies in offering an analytically
validated discrete-event IoT network simulation model, which
includes an AdHoc (Mobile AdHoc Network, MANET) and
a RFID network combined. The model can be used to reason
about energy saving as a function of traffic congestion. Fur-
thermore, the study also provides case studies that showcase
the approach. To the best of our knowledge (and as discussed
in Section II), we have not found in the literature review work
that approaches this topic with such features.

The remainder of this paper is organized as follows: In
Section II, we review previous work. The system model is
discussed in Section III. Two case studies illustrating the
application of the model are shown in Section IV. In Section
V, the results are discussed. We summarize and present our
conclusions and future work in Section VI.

II. RELATED WORK

Mobile communications consume a significant amount of
energy. In the work by Dahal et. al [2], more than 50% of the
total energy is consumed by the radio access, and within this
fraction - 50-80% is used for the power amplifier. The results
revealed a linear relationship between the power consumption
and traffic loads, and the authors provided suggestions for
energy-efficient wireless communication.Measurements show
the existence of a direct relationship between base station
traffic load and power consumption. The paper by Lorincz
et al. [3] developed a precise linear power consumption (Watt
X Erlang) model for base stations of GSM (Global System
for Mobile Communications) and UMTS (Universal Mobile
Telecommunications System).

In the work by Deruyck et al. [4], a power consumption
model based on network traffic for base stations is proposed.
This model is validated by temporal power measurements on
actual base stations. The energy efficiency of three different
wireless technologies (WiMAX, LTE, and HSPA) is compared.

Ghandi et al. [5] measured the variation of power in relation
to the corresponding variation of traffic (in Erlang) in a CDMA
network. Other parameters such as the number of lost calls,
the number access failures and the duration in minutes were
also considered. They found the variation of power to be larger
than the variation in traffic. Based on the measured data, they
estimated an analytical/empirical model. From the viewpoint
of the relation power per Erlang, they found that a network
with small cells to be the most effective.

The paper by Hinton et al. [6] presents a network-based
model of power consumption for the Internet infrastructure.
The access network dominates the Internet’s power con-
sumption. However, as the access speed grows, the power



consumption in the core network routers prevails over the
access network consumption. Several strategies were created
to improve the energy efficiency of the Internet.

Our work differs from previous research in that our model
is an IoT network, unlike e.g. Deruyck et al. who deal with
both macro-cell and micro-cell base stations, or Hinton et al.
who address power consumption in the Internet. Previous work
have also taken direct measurements on real physical networks,
whereas our work has employed discrete event simulation.
Much like previous research, our work also focuses on the
relationship between network traffic congestion and power
consumption. However, our focus lies in establishing the steps
to determine this relationship using discrete event simulation
(and analytical models for the purpose of validation). It
analyses both congested and uncongested network scenarios
in order to establish the level of power reduction. As such,
our method has the capability of being used as a management
tool for existing networks or as planning and dimensioning
tool for future designs.

III. SYSTEM MODEL
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Fig. 1. IoT Network model.

An IP packet is modeled as an entity that arrives to the
system and crosses several internal queues in a cluster before
its departure (i.e. before it is consumed by an application).
The network model is a hierarchy consisting of clusters
which contain nodes, which in turn have multiple CPUs, thus
allowing several parallel connections. Inherent to each queue
is the waiting delay before a packet can be processed by a
server. Clearly, both queueing and processing times are subject
to statistical distributions. Therefore, a network cluster may
be regarded as a set of internal queues (each one associated
with an outbound link). The network components are the
mediator, gateway and endpoints. The endpoints can be RFID
and sensors for different applications. Figure 1 shows the
network model with its inputs (packets) and outputs (packets)
for each cluster. The upper part of the model consists of the
RFID network, the Mediator, Internet and applications. Their
details are as follows:

• Mediator MD, which is a node and contains one or more
CPUs;

• Two clusters (CLR1, CLR2), which perform the acquisi-
tion/input of RFID tags;

• Two RFID inputs, which receive data packets generated
by IoT RFID tags (RFID reader);

• Two applications: 1) smart and green building including
the control of actuators (light, auxiliary power supply
(UPS), air conditioning), and 2) SNMP management.
Note that the path from the application to the actuators,
and the actuators themselves are not the focus of this
work;

• Internet, which models the traditional Internet.

The lower part of Fig. 1 is an AdHoc Network that generates
data traffic which is aggregated by the IoT mediator. It consists
of the following elements:

• 7 clusters (CLT1....CLT7); these are non-mobile and ho-
mogeneous for the sake of simplicity. However, the model
does not restrict the addition of heterogeneous clusters.
Each cluster consists of up to 2 cluster heads and n mobile
nodes/processors, where n is a configurable parameter.
Each cluster head is a static (non-mobile) intermediate
system, i.e. all the traffic that leaves the cluster is sent
through the cluster head;

• 4 gateways or Internet nodes (GW1....GW4); Both GW1
and GW2 are output gateways; GW3 is an emergency
gateway, i.e. it is used as a backup gateway for GW1,
e.g. when the latter overflows its internal buffers; GW4
and also GW2 are protocol converters, i.e. they are used
to integrate two subnets;

• 7 Inputs: model data packets generated by IoT sensors;
• 3 Internet outputs (via Mediator): from GW1, GW2 and

GW3, they model the flow of IP packets outbound;
• Input variables: data arrival and service time distributions

in a node;
• Control variables: probability of node connectivity in a

cluster. This probability is provided by the Random Way-
point algorithm (which depends on a range of variables
such as receiver threshold, area size, antenna type, height,
and gain, and system loss coefficient among others);

• Output variables: mean queue time and mean CPU uti-
lization on each cluster for a given position of the nodes
within the cluster.

Each cluster contains several nodes which in turn have
internally one or more CPUs. In addition, the output CPUs
in each cluster are used for its output channels/links (Table
I). These output CPUs (clusters heads) are fixed in our model
(without sacrificing the quality of the results), although it is
possible to configure them to have some limited degree of
mobility as well. Nodes share the output CPUs for relaying
outbound traffic, provided that they have connectivity, i.e. they
are within the power range of either an output CPUs or an
intermediate node.

Each node is modeled as four simulation blocks connected
in series: Enter block: the enter block simulates the arrival of
a packet in a cluster. It counts the number of packets entering
the cluster; Decide block distributes the packets across a set of
outgoing lines, where each line is associated with an outgoing
queue. An important parameter in this block is the probability
of packet loss (due to connectivity loss as given by the Random
Waypoint, RWP, model), and its value was obtained from
the case study (Section IV). The probabilities of a packet
being forwarded to an outgoing link are initially configured



TABLE I
NETWORK CONFIGURATION.

Function Probability Output CPUs
GA12 1 25
GA34 1 28
GA57 1 29,33
GA8 1 19,34

AdHoc submodel 1 30
AdHoc submodel 1 31
AdHoc submodel 1 32

CLR1 1 21
CLR2 1 22
MD 1/2, 1/2 24, discard
GWI 1/3,1/3,1/3 23, 26, 27
GW1 1 5
GW2 1/3, 2/3 11,6
GW3 1 14
GW4 1 17
CLT1 1/4, 3/4 1,2,20*
CLT2 1/3, 2/3 3,4
CLT3 1/2, 1/2 7,8
CLT4 1/4, 3/4 12,15
CLT5 1/3, 2/3 16,13
CLT6 1/2, 1/2 9,10
CLT7 1 18

* output-CPU 20 is used only in an emergency
GA - application gateway

as shown in Fig. 1 (e.g. 1/4 from cluster 1 to cluster 2 and
3/4 from cluster 1 to cluster 3); Output queue represents the
queueing time in the outgoing line; Output cluster simulates
the output (i.e. forwarding) of packets from the cluster. It is
also responsible for counting the number of packets leaving
the cluster.

Table I shows the relation of cluster / gateways to output
CPUs. The column “Probability” is associated to the column
“Output CPUs”. Each probability is used to define the traffic
management of each node according to a given application.
These values also indicate the probability of a packet being
serviced by the indicated output CPU. For example, the
probability that cluster CLT2 sends a packet to output CPU3
is 1/3, and this probability is 2/3 for output CPU4.

Each node receives packets at the input link and forwards
them to one of the outbound links using UDP over IP
(Datagram). Since the arrival of requests for the RFID and
AdHoc networks can be modeled as a Poisson process, the
traffic volume of each individual node can be extended to the
traffic volume of a cluster by the simple sum of the rates of
Poissonian arrivals. Thus, we sum the rates of each node to
form a cluster of ten nodes, for instance.

The model adds two representative applications that process
and consume the information leaving the mediator, SNMP
management, and Smart Green. Smart green applications re-
ceive and store information in databases. RFID information
is all based on traffic generated by RFID tags (96-bit EPC-
Global). The SNMP application receives a trap from the
mediator, and it sends a request to the same, which replies
with a response. In typical IoT, the databases can be reached by
mobile or cell phone applications through the secure HTTPS
protocol.

IV. CASE STUDY

The results for the two case studies are presented in Table
IV and discussed in the following subsections.

A. Case 1 - Congested Network

Fig. 2 illustrates the results for Case 1. Case 1 (Table IV)
shows the case for a congested network. It uses an arrival rate
of EXPO (0.4) (= 2.5 packets/sec). We also need the 14 x 14
matrix R, which describes the probabilities shown in Fig. 1,
since it is used to evaluate the degradation of the nodes that
are congested.
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Fig. 2. CPU mean queuing time and utilization: Cases 1 and 2.

Table IV shows the total average message delay times (in
seconds). The delays depend on the path taken by the packets
in the routing scheme. The first column shows the type of
messages, which are 1) SNMP messages; 2) Sensor 1 measures
current and voltage for an air conditioning (A/C); 3) Sensor 2
indicates level of illumination; 4) Sensor 3 reads current and
voltage battery values (UPS), and 5) RFID tag.

The message delays are measured from their source inputs
(clusters) to the MD outputs. Tables II and III are related to
this case, i.e. the evaluation of traffic under congestion. The
values of γ refer to the packet generation rate in each cluster,
according to Table II. From the values of γ and Matrix R,
we may calculate the λ values that correspond to a Jackson
network [7]. Further details of this calculation are shown in
the following subsection.

In Fig. 2 we observe that some CPUs are overloaded
(i.e. high CPU utilization), and the overloading of a single
node may be propagated to other nodes to the point of
compromising the whole network (in the event of a worst case
scenario). Due to the fact that the mean queue time of CPU
6 is very high (39 s), it was not placed in Fig. 2 (congested,
top/left) in order to allow the other CPUs to be viewed.

This congestion leads to higher CPU utilization in each node
since congestion triggers the error detection and correction
as well as retransmission of lost packets. It is only in the
following case, i.e. Case 2, that we decongest the network
and the difference in the utilization is related to the reduction
in power consumption for the batteries of the mobile devices.
By figuring out this relationship, we become able to estimate
the actual gain in power consumption. Considering that the
capacity of both CPUs (except MD CPU) and links between
clusters is constant, we reduced the arrival rates to decongest



TABLE II
CONGESTED (CASE 1) AND UNCONGESTED (CASE 2) NETWORK TRAFFIC - ARRIVAL RATES ( γ AND λ) IN PACKETS/SEC

Case 1
— CLT1 CLT2 CLT3 CLT4 CLT5 CLT6 CLT7 GW1 GW2 GW3 GW4 CLR1 CLR2 MD
γ 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0 0 0 0 1.67 1.67 5.0
λ 2.5 5.31 4.38 2.5 5.31 4.38 8.23 7.01 15.7 0 10.0 1.67 1.67 25.8

Case 2
— CLT1 CLT2 CLT3 CLT4 CLT5 CLT6 CLT7 GW1 GW2 GW3 GW4 CLR1 CLR2 MD
γ 1.67 1.67 1.67 1.67 1.67 1.67 1.67 0 0 0 0 1.67 1.67 5.0
λ 1.67 3.54 2.92 1.67 3.54 2.92 5.49 4.68 10.49 0 6.67 1.67 1.67 20

TABLE III
CONGESTED NETWORK (CASE 1) AND UNCONGESTED (CASE 2) TRAFFIC (ERLANG) PER CPU

Case 1 (Total = 6.734 Erl)
CPU 1 2 3 4 5 6 7 8 9 10 11 12

Traffic (Erl) 0.125 0.125 0.267 0.267 0.71 0.587 0.219 0.219 0.219 0.219 0.587 0.125
CPU 13 14 15 16 17 18 19 20 21 22 23 24

Traffic (Erl) 0.267 0 — 0.267 1.00 0.823 – – 0.167 0.167 – 0.258
Case 2 (Total = 4.896 Erl)

CPU ID 1 2 3 4 5 6 7 8 9 10 11 12
Traffic 0.084 0.084 0.177 0.177 0.468 0.525 0.146 0.146 0.146 0.146 0.525 0.084

CPU ID 13 14 15 16 17 18 19 20 21 22 23 24
Traffic 0.177 0 0 0.177 0.667 0.549 0 – 0.167 0.167 – 0.20

CPU 19 - RESERVED (for future extensions), CPU 20: Emergency, CPU 23, 25 to 34: Application

the network, as shown in the next subsection. To verify that
the network was decongested, we used Jackson networks.

B. Case 2 - Uncongested Network

Case 2 (Table IV) shows the simulation results where the
arrival rate is set to an EXPO (0.6) (= 1.67 packets/s) for a
stable (non-congested) network. Three types of messages were
considered, i.e. SNMP control, RFID, and sensor messages
(light, AC and battery). Tables II and III are related to Case
2 and show the evaluation of traffic under uncongested load.
Figs 2 shows the results for Case 2.

Since the initial simulation model has both exponential
arrival and service distributions, it may be validated against
Jackson’s open queuing network model [7]. The solution is
obtained from a Markov chain. The packet arrival rate is 1/0.6
= 1.67 packets/s. The first seven arrivals, each generated by a
cluster (gateways do not generate traffic), yield 1.67 packets/s
(the remaining four are gateway inputs), therefore: γ = [1.67,
1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 0, 0, 0, 0, 1.67, 1.67,5.0].
We also need the 14 x 14 matrix R, which describes the
probabilities shown in Fig. 1 . The total arrival rates in each
cluster or gateway is given by the vector: λ = γ [I −R]−1,
λ = [1.67, 3.54, 2.92, 1.67, 3.54, 2.92, 5.49, 4.68, 10.49,
0, 6.67, 1.67,1.67,20]. From the rates obtained from Table
II, it is possible to calculate the packet delay for each CPU
(Wi, [i=1....24]) by means of the equation Wi =

λi/µi
µi−λi

, which
gives the delay in an M/M/1 queue, where λi and µi are the
rates for each CPU, and µi =

1
0.1 = 10 packets/s. It is also

possible to calculate the traffic, in Erlangs, for each CPU

as
λi

µi
(Table III). Since all the delay values obtained from

the simulation model matched the ones from the analytical
model, the simulation model may be deemed validated. This
validation is a crucial step since it allows further extensions
to this model, i.e. the inclusion of other model features such
as new types of distributions. Due to the high utilization of
the mediator (output CPU 24), its service rate was increased
5 times (i.e. from 10 to 50 packets/s).

The initial distribution adopted for the arrival and service
rate was the exponential. This distribution is suitable since
1) it allows the validation of the model with an analytical
model; 2) it is the one that stresses the network (the worst-
case when there is no bursts). If the exponential distribution
does not match the reality, it is possible to combine exponential
distributions to form Erlang(k) distributions, which may better
reflect and the actual traffic model in the network. Otherwise,
if there are bursts in network, the Pareto or Hyper-exponential
distributions may be employed, depending upon the applica-
tion. Once the model is validated by incremental evolution,
other types of extensions and distributions may be studied.

TABLE IV
MESSAGE DELAY TIME (SECS) FOR CASE STUDIES.

Message Case 1 Case 2
type congested uncongested

SNMP 0.093 0.085
sensor 1 AC

28.04 2.28sensor 2 light
sensor 3 battery

RFID 2.170 2.145



V. ANALYSIS, REMARKS AND DISCUSSION

It was possible to realize through this work that the method-
ology allowed us to identify the bottleneck and by increasing
its capacity, it was possible to reduce congestion in the
network.

The impact of congestion reduction on power consumption
depends on the hardware implementation. Table V shows
scenarios taken from six typical networks. For example, in the
work by Dahal et al. [2], power consumption for base stations
in ten consecutive days (including weekends), and for 864000
samples collected from a 3G system - is given by y = a+bx,
where a is given in Watt and b in Watt/Erl; the value of x is
the reduced traffic in Erlangs. Under high traffic, y = 1.274 +
1.713x, and the regression has a coefficient of determination
reasonable but not large, i.e. r2 > 0.765 (Table V, 3G - BS).

TABLE V
IMPACT OF TRAFFIC REDUCTION ON POWER CONSUMPTION.

Busy Hour
Equipment [ ref ] Equations (W) Reduction (Watts)

Jackson Simul.
3G - BS [2] 1.274 + 1.713x 4.42 4.94

GSM900 - sector1 [3] 581 + 11.9x 602.9 606.5
GSM900 - sector2 [3] 549 + 11.1x 569.4 572.8
UMTS - 3 sectors [3] 551 + 1.14x 553.1 553.4

WiMAX, LTE, HSPA [4] 493.2x 906.5 1055.4
CDMA (forwarding link) [5] 0.734x 1.35 1.57

If our simulation model had a 3G implementation such as
the one by Dahal et al. [2], and considering that the values
we obtained are for high (or peak) traffic, we would estimate
a daily reduction in power consumption of 4.42 Watts for 24
CPUs (i.e. 1.274 + 1.713 (6.734-4.896) = 4.422 W). For the
simulation model, considering all 34 CPUs, the energy saving
is 1.274 + 1.713 (7.056-4.915) = 4.94 W. The difference of
10 CPUs, besides statistical fluctuations in the analytical and
simulation model may explain the small difference (i.e. 4.42
and 4.94). It is an indication of validation of the models,
although a more strict validation procedure was developed by
Leite et al. [1]. For the highest traffic load between 8-11 am to
6-8 pm, these figures would roughly translate into a monthly
savings of up to 450 Watts · h/month in the whole network,
which could - in turn - represent a substantial extension
of battery life. The calculation of the impact for the other
networks follows the same reasoning. This implies in about
100 times (5 hours per day times 20 days per month) the
values of columns 3 and 4 in Table V.

To simulate the performance of the network, the adopted
mobility model was the Random Waypoint (RWP). To eval-
uate each node independently, a MATLAB routine generates
random positions for the ten nodes within each cluster every
one second. Lastly, the proposed model is general and it can be
instantiated for specific applications. For example, the prob-
abilities of transmission for outgoing links can be measured
in a real application and replaced in the model. The arrival
and service distributions considered may also be replaced by
actual measurements and/or other types distributions.

VI. SUMMARY AND CONCLUSION

In this work, we addressed the impact of reduction of
network congestion on power consumption. This was carried
out by following a methodology involving six steps as outlined
earlier. We tackled traffic congestion since it is a critical com-
ponent that adds power consumption and thus reduce battery
lifetime of both devices and communication infrastructures.

To illustrate the approach, we built a discrete event simu-
lation model that included an AdHoc network, a mediator, a
set of applications and a set of inputs (RFID, sensors) which
generate traffic input to the network. The simulation model
was then exercised through two case studies that estimated
the network traffic both with and without congestion. The
network traffic then may be translated into power consumption
via an energy consumption model that depends on the target
implementation hardware platform.

The model is capable of estimating the power consumption
both globally and at individual nodes, and both at design and
operation time. This methodology is, at design time, the only
viable alternative means to estimate power consumption on
large networks, since measurements and data from the physical
network are not available, and since analytical models cannot
capture the complexity of such networks. For an already
existing and operational network, we argue that it is also the
easiest approach to estimate future bottlenecks and predicting
power consumption due to network expansion (growth).

As future work, we consider that the reduction of power
consumption may be better explored by adding a central
entity for traffic management implemented as a fuzzy logic
controller.
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