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Abstract— In adaptive beamforming, computational cost is a
critical factor for the beamformer performance. The newest
methods employed in robust adaptive beamforming use com-
plex calculations to achieve the highest SINR values, but the
computational cost usually increases. So, methods to reduce this
cost maintaining relatively high SINR are desired. The idea is to
use simple beamforming methods when the SINR performance
is reasonable and a more sophisticated method when it degrades
below a certain value. Nonetheless, an algorithm that switches
between the delay-and-sum and loaded sample-matrix inversion
method is presented.

Keywords— Adaptive beamforming, uniform linear array,
sample-matrix inversion, loaded SMI, minimum variance distor-
tionless response beamformer and loading factor γ.

I. INTRODUCTION

In the last decades, antenna arrays have been a relevant
research topic in various applications [1]: radar; sonar; wireless
communications; etc. They are used in beamforming solutions
and several approaches have been developed to increase their
performance in various scenarios. Methods for direction-of-
arrival (DOA) estimation - delay-and-sum (DS), Capon and
MUSIC [2] - and for robust adaptive beamforming (RAB) -
minimum variance distortionless response (MVDR) and least-
mean-square (LMS) [3], [4] - have been proposed. When the
DOA of the signal-of-interest (SOI) is known, the simplest
method to aim the array is the DS one.

When the environment variables - noise, DOA, array imper-
fections, etc. - are unknown, adaptive beamforming is used [5],
[6]. It consists of a versatile approach to detect and estimate
the SOI [7]. The main goal in adaptive beamforming is to
maximize the beamformer output signal-to-noise-ratio (SINR).
However, typical applications include the SOI in their training
snapshots, which can severely degrade the SINR performance
as the SOI component can be mistakenly interpreted as an
interferer by the algorithm.

In RAB, the minimum variance distortionless response
(MVDR) is one of the commonly used methods [4]. Two
typical variants of the MVDR use samples to maximize the
SINR: the sample matrix inversion (SMI); and the loaded
SMI (LSMI) [8]. The former uses the inverted interference-
plus-noise covariance matrix; the latter just loads this matrix
diagonal with a constant loading factor. This factor improves
the algorithm robustness and its value has been empirically
suggested in previous works [3].
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These RAB methods - SMI or LSMI - are computationally
expensive when compared to the simpler methods [9], such as
the DS one, as they use complex operations, such as matrix
inversion. These algorithms are very robust and they can
achieve very high SINR values, but sometimes the DS method
is able to achieve similar SINR performance with a much
lower computational cost. Therefore, an algorithm capable of
switching between the two methods in order to take advantage
of the DS simplicity and the LSMI robustness is suggested.

This paper is divided as follows: Section II gives a synthesis
of concepts related to adaptive beamforming; Section III
proposes an adaptive beamformer based on the estimation error
of the SMI and LSMI methods; Section IV proposes a shifting
DS-LSMI beamformer; Section V presents the conclusions.

II. BACKGROUND

In this paper, a uniform linear antenna array (ULA) with
M omni-directional antenna elements is used. The narrowband
signal received by the ULA at the time instant k is represented
by equation (1), where x (k) is the snapshot captured by the
ULA. This snapshot is composed of s (k), i (k) and n (k),
which are the signal, interference and noise M × 1 vectors
respectively and k is an index that represent the time instant
that they were captured.

x (k) = s (k) + i (k) + n (k) (1)

The signal is assumed to be uncorrelated with the interfer-
ences and the noise; a point source - far-field consideration
- is considered so the signal and the interferers arrive at the
ULA as a plane wave. The contribution of the signal s (k) is
expressed by equation (2).

xs (k) = s (k)a (θs) (2)

In equation (2), the a (θs) represents the steering vector for the
signal arriving from the direction θs [2] and it can be modeled
by equation (3), where φs = 2π dλ sin (θs).

a (θs) =
[
1 exp−jφs · · · exp−j(M−1)φs

]T
(3)

The beamformer output at the time instant k is given by
equation (4), where w is a M × 1 complex weight vector of
the ULA and (·)H denotes the Hermitian transpose operation.

y (k) = wHx (k) (4)

If the weight vector w delays the various sensors outputs in
a way that the signal components are aligned to the direction



of the target, then the beamformer uses the DS method to
estimate the output signal [7]. Therefore, the weight vector
for the DS method can be expressed by equation (5).

wDS = a (θs) (5)

Another way to calculate the weight vector w is to maxi-
mize the beamformer output SINR. This implies solving the
optimization problem described by equation (6).

min
w

wHRi+nw s.t. wHa (θs) = 1 (6)

The solution is known as minimum variance distortionless
response (MVDR) beamformer and its weight vector will be
given by equation (7), in which α represents a scaling factor
immaterial to the SINR.

wMVDR = αR−1
i+na (θs) (7)

In practice, it is not possible to know the actual Ri+n as
the antenna snapshots also include the signal component. So,
this matrix is commonly replaced by a data sample covariance
matrix given by equation (8).

R̂ ,
1

K

K∑
k=1

x (k)xH (k) (8)

The SMI beamformer is obtained by replacing the
interference-plus-noise covariance matrix Ri+n in the MVDR
beamformer from equation (7) by the sample estimate of the
data covariance matrix from equation (8) [3].

The LSMI beamformer is a robust approach to the SMI
beamformer and it is based on the diagonal loading of the
sample covariance matrix [10]. This means that the matrix R̂
is replaced by a diagonally loaded matrix R̂DL in the weight
vector expression given by equation (7), as in equation (9),
where γ is the diagonal loading factor and I is the identity
matrix with the dimensions corresponding to the size of R̂.

R̂DL = R̂+ γI (9)

Using equation (9), it is possible to define the weight vector
expression for the LSMI beamformer in equation (10).

wLSMI = R̂−1
DLa (θs) =

(
R̂+ γI

)−1

a (θs) (10)

It is clear that the DS method provides the simplest solution
and the LSMI method has a higher computational cost as it
needs to calculate the inverse of the autocorrelation matrix
RDL.

III. SMI AND LSMI BEAMFORMERS BASED ON
RECEPTION ERROR

When digital modulation - such as binary phase-shift keying
(BPSK) or quadratic phase-shift keying (QPSK) - is used,
a reception error (REr) can be easily estimated. This error
is defined as the displacement between the output of the bit
detector (−1 or +1) and the received signal, which may be
corrupted by noise and interferences. For simplicity, the BPSK
modulation is chosen for the simulations. In this situation, the

received signal sample has a complex value which will be
decided by the two possible outcomes based on the euclidean
distance. This scenario is shown on Fig. 1.
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Fig. 1. Two examples of reception error.

Conventional adaptive algorithms recalculate the weight
vector w each time a new sample is perceived. This is rather
computationally expensive as the receiver has to recalculate the
inverse of the autocorrelation matrices for the LSMI method,
even when the difference between the old and the new matrices
and the SINR gain are minimal. Therefore, the purpose of the
new algorithm is to reduce the amount of adaptation iterations
based on the received signal quality using the following idea: if
the REr is within a certain threshold, no adaptation is needed;
otherwise, an adaptation is done.

The algorithm used can be specified as follows: (i) calculate
the output y = wHx; (ii) estimate the REr; (iii) adapt the
weight vector w if |REr| < a, else keep it.

The simulations have the following characteristics: an ULA
of M = 16 antennas with 0.5λ inter-space is used to perceive
the signals; n = 2 users, SOI and interferer, both with the same
power and coming from 30◦ and 70◦ respectively and using
BPSK modulation; and N = 2, 000 samples are captured. The
noise is modeled as additive white Gaussian noise (AWGN)
and its power will vary in order to verify how efficient the
methods are.

A. Complex Reception Error

The BPSK detector uses the euclidean norm to decide which
value was transmitted: −1 or +1. The REr is determined by
the distance between the received signal sample and the BPSK
detector output, as shown in Fig. 1. The idea is to adapt
whenever the euclidean norm of the REr is greater than the
value R as it is represented in Fig. 2; if this received value
is inside one of the circles whose radii are R, no adaptation
is needed. The value for the radius R is not critical and it
is chosen as R = 5. Therefore, it should be chosen as a
function of the computational cost and the SINR performance:
the smaller is the value for the radius R, the bigger is the
computational cost.

Table I presents the bit error rate (BER) for different noise
variances and the number of adaptations done by each method,
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Fig. 2. REr estimation criterium.

TABLE I
NUMBER OF ADAPTATIONS AND ERROR PERCENTAGE WHEN VARYING THE

NOISE VARIANCE USING COMPLEX RECEIVED ERROR.

σ2
n iSMI BERSMI (%) iLSMI BERLSMI (%)
1 432 0.35 600 0
2 438 0.40 1377 0
3 436 0.60 379 0.05
4 429 0.95 31 0.20
5 430 1.55 31 0.45

10 442 5.15 31 2.95
20 449 11.10 31 10.05
30 442 15.75 31 14.00
40 458 18.75 31 17.45
50 457 21.45 31 19.40

denoted by iSMI and iLSMI . Using the proposed adaptation
criteria, for example, the first row on Table I shows that: the
SMI had a total of iSMI = 432 adaptations and a BER =
0.35%; the LSMI had a total of iLSMI = 600 adaptations and
a BER = 0. The results are rather intuitive: as the noise
variance becomes greater, the errors of both beamforming
methods become greater as well. However, the rate at which
each one increases is different as the LSMI seems to be less
affected by the increase in the noise variance. Two phenomena
are important to note in the simulation: for low noise variances,
the LSMI presents a low error rate when compared to the
SMI; on the other hand, their error rates become close to
each other for high noise variances. It is worth noticing that
the computational cost was reduced with a little performance
degradation.

B. Real Reception Error

Here, the adaptation is based on the real value of the
received signal for the detection. The real part distance is
compared to both possible outcomes (−1 or +1) and the
closest one is chosen as the desired value. It is easy to
understand that, as the received signal gets closer to the
vertical axis, the probability to occur an estimation error
becomes greater, which increases the need for an adaptation.

The criterium is specified as follows: if the real value is
greater than a certain threshold, the weight vector is kept; if
it is smaller, the weight vector is recalculated.

Table II presents the simulation with R = 0.6 for different
noise variances. The results follow the same intuitive behavior
as the previous case: the error becomes greater as the noise
variance is increased.

TABLE II
NUMBER OF ADAPTATIONS AND ERROR PERCENTAGE WHEN VARYING THE

NOISE VARIANCE USING REAL RECEIVED ERROR.

σ2
n iSMI BERSMI (%) iLSMI BERLSMI (%)
1 500 0.40 821 0
2 541 0.40 1597 0
3 564 0.65 461 0.05
4 583 1.00 31 0.20
5 612 1.55 31 0.45
10 731 4.95 31 2.95
20 800 11.05 31 10.05
30 832 15.35 31 14.00
40 846 18.80 31 17.45
50 845 21.20 31 19.40

Nevertheless, it is important to note that: for low noise
variances, the BER pratically the same for both complex and
real approaches; for high noise variances, the real approach
presents lower error rate than the complex one. Once again,
it is worth noticing that the computational cost was reduced
with a little performance degradation.

IV. SHIFTING DS-LSMI BEAMFORMER

The DS beamformer provides good SINR performance
when the DOI of the SOI does not change. Now, the LSMI
beamformer, which is a robust approach to beamforming,
is capable of achieving higher SINR performance at certain
moments, but the downside is the high computational cost
inherent to the process. Therefore, both methods have their
advantages and disadvantages depending on the scenario con-
ditions. This way, a beamformer method, named shifting DS-
LSMI (S-DS-LSMI), capable of shifting between the two
methods - DS and LSMI - in order to take advantage of
the simplicity of the DS approach and the higher SINR
performance of the LSMI approach is proposed.

In order to validate the proposed beamformer, simulations in
which the SINR performance is measured when the variance
of an interferer is varied in unitary steps from 1 to 10 were
done. A hipothetical solution, named hipothetical DS-LSMI
(H-DS-LSMI), which always chooses to use the method that
gives the highest SINR, is used to evaluate the S-DS-LSMI
performance.

The proposed S-DS-LSMI beamformer uses two decision
regions to decide between the DS and the LSMI approaches.
These regions are shown in Fig. 3: if a received signal falls
within the interval [−a; +a], the beamformer uses the LSMI
algorithm; if it falls outside the region, within the intervals
[−∞;−a] ∪ [+a; +∞], it uses the DS one.

The algorithm can be summarized as follows: (i) the output
y = wHx is calculated using w = wDS ; (ii) the REr
is estimated; (iii) if |Re {REr}| < a, then the output is
recalculated using w = wLSMI , else keep w = wDS ; (iv)
the output y = wHx with the previously chosen weight vector
w is calculated; (v) the bit detection is done using wDS or
wLSMI as the weight vector w calculated using the output y.

The system configuration and the environment behavior
follows the same pattern in both situations: 1 user transmitting
the signal with unitary signal variance; 1 interferer with power
varying in steps from 1 to 10; SOI coming from 30◦ and



-a +a

Im

Re

-1 +1

DS DSLSMI

Fig. 3. Decision regions based on the complex diagram of the received bits.

the interferer, from 70◦; ULA with the antennas spaced 0.5λ
between them; unitary noise variance σ2

n; 2, 000 samples; the
loading factor for the LSMI approach is 10σ2

n.
In the following tables, the DS and LSMI columns contains

the usage percentage of the respective method and the SINR
values in the columns were calculated in dB.

A. ULA with 32 antennas

The results for this case are displayed in table III.
For unitary interferer variance, it is noticeable that the S-

DS-LSMI achieves almost the same SINR as the H-DS-LSMI.
However, as the interferer power is augmented, the frequency
that the LSMI method is used for both the S-DS-LSMI and
the H-DS-LSMI increases to maintain the SINR as high as
possible. In the S-DS-LSMI beamformer, the usage percentage
of the LSMI method does not increase much, but this does not
represent a problem as the SINR performance suffers a small
degradation - approximately 0.15 dB - when compared to the
H-DS-LSMI beamformer.

For extreme-cases (σ2
int = 10), the number of iterations

in which the LSMI method is used increases significantly
for the H-DS-LSMI, but not as much for the S-DS-LSMI.
Comparing the percentages of LSMI use, it was used: 7.05%
of the times for a SINR of 14.5902 dB in the S-DS-LSMI;
and 30.70% of the times for a SINR of 14.7320 dB in the
H-DS-LSMI. This represents a difference of 23.65% of the
times of LSMI usage for a a SINR gain of just 0.1418 dB,
which might not justify the increase in computational cost. In
situations in which computational cost is critical, using the S-
DS-LSMI may seem to be the best approach as the number of
iterations that use the DS method is relatively high. Therefore,
the computational cost is reduced because the DS method is
used more times and it is a simpler method compared to the
LSMI one.

B. ULA with 64 antennas

The results for this case are displayed in table IV.
A similar behavior to the ULA with 32 antennas is no-

ticeable: when the interferer has unitary variance, the SINR
performances are practically the same; when the interferer
variance increases, the number of LSMI iterations needed to

TABLE III
PERFORMANCE OF S-DS-LSMI AND H-DS-LSMI VERSUS INTERFERER

POWER.

σ2
int

S-DS-LSMI H-DS-LSMI
%DS %LSMI SINR %DS %LSMI SINR

1 94.80 5.20 15.0387 92.40 7.60 15.0476
2 94.80 5.20 15.0127 91.35 8.65 15.0360
3 94.85 5.15 14.9807 90.40 9.60 15.0170
4 94.70 5.30 14.9412 88.55 11.45 14.9911
5 94.65 5.35 14.8976 85.75 14.25 14.9591
6 94.25 5.75 14.8511 83.25 16.75 14.9216
7 93.80 6.20 14.7936 80.25 19.75 14.8794
8 93.75 6.25 14.7352 76.80 23.20 14.8331
9 93.40 6.60 14.6664 73.75 26.25 14.7836
10 92.95 7.05 14.5902 69.30 30.70 14.7320

get the best SINR value increases significantly; in the S-DS-
LSMI, this does not happen as the LSMI number of iterations
increase in a much lower pace.

Comparing both beamformers and considering the case in
which σ2

int = 10, the number of iterations in which the LSMI
is used increases significantly for the H-DS-LSMI and slightly
for the S-DS-LSMI. In the S-DS-LSMI, the LSMI method
was used in 1.75% of the total iterations and achieved a SINR
of 17.3148 dB; in the H-DS-LSMI, the LSMI method was
used in 44.05% of the total iterations and achieved a SINR
of 17.5264 dB. This represents a difference of 42.30% of the
times the LSMI was used for just a 0.2116 dB gain in SINR,
which might not be justified by the additional computational
cost inherent to using the LSMI method more times. Also, it
is worth noticing that the S-DS-LSMI method can achieve
similar SINR performance to the H-DS-LSMI beamformer
with less computational cost, because the DS method is used
more frequently.

TABLE IV
PERFORMANCE OF S-DS-LSMI AND H-DS-LSMI VERSUS INTERFERER

POWER.

σ2
int

S-DS-LSMI H-DS-LSMI
%DS %LSMI SINR %DS %LSMI SINR

1 99.10 0.90 18.0498 99.15 0.85 18.0538
2 99.20 0.80 18.0247 95.70 4.30 18.0303
3 99.15 0.85 17.9827 90.60 9.40 17.9929
4 99.20 0.80 17.9281 85.40 14.60 17.9443
5 99.10 0.90 17.8537 81.75 18.25 17.8855
6 99.05 0.95 17.7697 74.10 25.90 17.8201
7 98.80 1.20 17.6710 69.80 30.20 17.7504
8 98.65 1.35 17.5620 65.35 34.65 17.6761
9 98.55 1.45 17.4441 58.70 41.30 17.6015
10 98.25 1.75 17.3148 55.95 44.05 17.5264

C. S-DS-LSMI versus H-DS-LSMI adaptation

In order to evaluate the performance of the S-DS-LSMI
beamformer, the SINR was calculated as the snapshots were
received. Fig. 4 corresponds to the H-DS-LSMI beamformer,
which always chooses the method that gives the highest SINR;
Fig. 5 corresponds to the case in which the beamformer
chooses the method based on the S-DS-LSMI beamformer.

From Fig. 4, it is possible to see that, in the best scenario,
there will be a lower limit for the SINR and it will be estab-
lished by the DS method performance. At certain moments,
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Fig. 4. Adaptation using the H-DS-LSMI.
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Fig. 5. SINR for the shifting DS-LSMI beamformer based on REr.

the SINR can achieve higher values using the LSMI method.
Taking the average SINR value out of the 2, 000 collected
samples, the values 17.5264 dB and 17.3148 dB are found
for the H-DS-LSMI and the S-DS-LSMI cases respectively.
Therefore, it can be seen that the SINR performance degrades
slightly using the S-DS-LSMI beamformer, but this degrada-
tion is relatively small compared to the computational gain
when using the DS method more frequently than the LSMI
one.

V. CONCLUSIONS

In this paper, several approaches to adaptive beamforming
have been proposed in order to reduce the computational cost
of the algorithms.

In the first analysis, both the SMI and the LSMI beamform-
ers have been developed and the weight vector was adapted
or not based on the distance between the received sample and

the expected value. For the SMI case, the number of algorithm
iterations increased slightly according to the increase in noise
power, as well as the BER. This result is rather intuitive,
because it was expected that more adaptations would be
needed if the noise power was increased. For the LSMI case,
the number of algorithm iterations decreased and it remained
constant for noise power values greater than σ2

n = 4. However,
the BER kept increasing as the noise was increased. Also, this
result is intuitive for the same reason as the SMI case. The
main point here is the ability to reduce computational cost
reducing the number of adaptations.

In the second analysis, a beamformer capable of shifting be-
tween the DS and the LSMI methods was proposed. Two cases
of this beamformer were analyzed: with 32 and 64 antennas.
Also, a hypothetical solution which always chooses the method
that gives the best SINR was used for comparison. Comparing
both the S-DS-LSMI and the H-DS-LSMI, it is easy to see
that choosing the S-DS-LSMI does not provide the best SINR
possible for the system. However, the number of iterations in
which the LSMI method is used decreases significantly and
this means that the computational cost is reduced and the loss
in SINR performance is relatively minimal. This happens in
both cases of antennas configuration. Therefore, this shifting
beamformer might be a good solution when computational cost
is a critical factor.
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