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Hybrid Local Search Polynomial-Expanded Linear
Multiuser Detector

Reinaldo Götz and Taufik Abrão

Abstract— In order to reduce computational complexity in-
herent to cross-correlation matrix inversion in DS/CDMA sys-
tem, this work proposes a hybrid multiuser detector based on
polynomial expansion (PE-MuD) followed by a low complexity
local search procedure, aiming at obtaining a near-optimum
multiuser bit-error-rate (BER) performance, but with an amount
of computational processing saving time. The proposed hy-
brid PE-MuD receiver topology is analyzed under realistic
wireless mobile channels, as well as useful system operation
scenarios. Simulations results have indicated an improvement in
performance-complexity trade-off regarding the classical linear
multiuser detectors (MuD) performance, particularly, the mean
square error minimization-based detector (MMSE).

Keywords— suboptimum search algorithms, polynomial ex-
panded multiuser detection, Gerschgorin circles, DS/CDMA.

I. INTRODUCTION

The total use of the transmission channel capacity, re-
gardless of the channel adopted, depends on the features of
the detector utilized, which prevent the effects generated by
the multiple access through non orthogonal code division,
mainly, in the effectiveness of the receptor to mitigate the
effects of multiple access interference (MAI), as well as to
deal with the near-far ratio (NFR). The optimal solution for
the multiuser detection problem lies in the employment of
maximum likelihood (ML) detector, presented in [1]. However,
ML detector complexity is impractical in almost scenarios
of interest. Hence, linear near-optimal MuDs, such as the
Decorrelator and MMSE were proposed in [2], [3]. Basically,
these detectors utilize the inverse cross-correlation matrix of
signature waveforms of the active users in the system (R−1)
to decouple the desired user’s signal.

Aiming at more efficient linear detectors implementation,
a multiple stage detection scheme, which obtains the inverse
cross-correlation matrix through polynomial expansion in R,
has been presented in [4]. In this study, the cross-correlation
matrix inversion is approximated via Neumann iterative series
expansion, with its coefficients estimated by the Gerschgorin
circles method [5].

The local search detection method, which sometimes is
classified as heuristic, but, in fact is a deterministic one,
is an optimization method that consists in the search of
solutions in a previously established neighborhood [6]. The
main advantage of this method lies on its reduced complexity.
A structure formed by the polynomial detector as the first stage
followed by a local search algorithm that provides a gain in
the detector performance has been presented in [7].

This work is divided into six Sections. Besides this intro-
ductory section, the system model is established in Section
II, in which a review on classic linear single-user (SuD)
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and multiuser detectors (MuDs) is presented. The polynomial
expansion method, used in the inverse cross-correlation matrix
approximation, is discussed in Section III. The application of
the local search method in the multiuser detection problem is
addressed in Section IV. The performance of some of the MuD
methods is revealed in Section V, while the work’s conclusions
are summarized in Section VI.

II. SYSTEM MODEL

Here, a discrete-time baseband system model is adopted,
with transmission through a channel with a single antenna
in the transmitter and receptor (SISO – single-input single-
output) subjected to additive white Gaussian noise (AWGN)
and flat Rayleigh fading. The same channel is simultane-
ously shared by K users, which operate under a synchronous
DS/CDMA system with binary phase shift keying modulation
(BPSK). In the transmission, the ith information bit generated
by the kth user, at a ratio of Rb = 1/Tb bits per second is
denoted by bk [i] ∈ {±1} , i = 1, 2, . . .. At each i bit interval,
bk [i] is modulated by a spread sequence with pseudo-noise
(PN) distribution and the ratio of Rc = 1/Tc = N/Tb = NRb

chips per second, represented by the vector

sk [i] = (sk,1 [i] , sk,2 [i] , . . . , sk,N [i])
T
, (1)

with sk,n [i] ∈
{
±1/

√
N
}

and N denoting the system’s
processing gain; (·)T denotes the matrix transposing operator.

In the base radio station (BRS), the received signal vector
is represented by

r [i] =
K∑

k=1

sk [i] ck [i]Akbk [i] + n [i] , (2)

where Ak is the amplitude of the signal transmitted by the
kth user; n [i] is the complex AWGN vector of mean zero and
variance σ2

n = N0, with bilateral power spectral density of
AWGN noise given by N0/2 W/Hz.

The term ck [i] denotes the complex coefficient of the
channel inherent to the kth user, at the i bit interval, per-
fectly known by the receptor. In statistical terms, ck [i] may
be represented by a circularly symmetric complex Gaussian
random variable, with mean zero and variance σ2

c , in the
form CN

(
0, σ2

c

)
. In the polar form, the channel’s complex

coefficient is described by:

ck [i] = |ck [i]| ejθk[i], (3)

where phase θk [i] is uniform over the range [0, 2π) and in-
dependent of the magnitude |ck [i]|, whose probability density
function is given by Rayleigh, f (r) = r

σ2
c
e−r2/2σ2

c , r ≥ 0.
In the notation of matrices, with bold capital letters rep-

resenting matrices and bold lower case letters representing
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vectors, and suppressing the term i for the sake of convenience,
the Equation (2) may be rewritten as follows:

r = SCAb+ n, (4)

with A = diag (A1, A2, . . . , AK) being the amplitude diago-
nal matrix of the received signals, S the spread spectrum ma-
trix with dimensions N×K and C = diag (c1, c2, . . . , cK) =
diag (|c1|, |c2|, . . . , |cK |) diag

(
ejθ1 , ejθ2 , . . . , ejθK

)
= FP

corresponding to the channel complex coefficients matrix,
where F P are respectively the diagonal matrices of magni-
tudes and phases of the channel. Vector b = (b1, b2, . . . , bK)

T

contains information bits transmitted by the K users and
n = (n1, n2, . . . , nK)

T is the complex noise vector with the
distribution N

(
0, σ2

n

)
.

The output signal of the matched filters bank (MFB) is
described taking account the channel phases:

ymfb = P∗y = P∗STr = STS|C|Ab+P∗STn

= RFAb+ z, (5)

where vector y = (y1, y2, . . . , yK)
T represents the despread

baseband-received signal, whose components are given by
yk = sTk r; the cross-correlation matrix of the signature
waveforms is obtained via R = STS; vector z = P∗STn
corresponds to the filtered noise with variance σ2

nR; the
conjugate operator is denoted by (·)∗. Finally, the K users’
information bits vector is estimated through:

b̂conv = sgn (ℜ{ymfb}) , (6)

where ℜ{·} is the real part operator.

A. Optimum Detection

The optimum performance is obtained with the use of the
ML detector, which performs the joint information detection
of the K users in the system, maximizing the following cost
function, which is based on the Euclidean distance between
the received signal and the signal reconstructed in the receptor
from the information candidate vector, b:

Ω (b) = 2ℜ
{
yTCHAb

}
− bTCARACHb, (7)

where (·)H is the matricial operator of conjugation and trans-
position.

The optimum multiuser detection (OMuD) criterion yields
the best information bits estimated vector b̂opt:

b̂opt = arg

{
max

b∈MPK
{Ω(b)}

}
, (8)

where P is the transmitted message length and M the symbol
alphabet dimension. For the binary modulation, i.e. M = 2,
the computational complexity of the ML detector is of the
order of O

(
2K

)
.

B. Linear Methods of Multiuser Detection

In [2], the linear methods of detection were discussed,
including the Decorrelator detector. This one operates from
multiplication of the discrete signals at the matched filters
output by the inverse cross-correlation matrix R−1. Consider-
ing the coherent reception model, the information bits vector

which is estimated after the application of the Decorrelator
multiuser filter may be described as follows:

b̂dec = sgn
(
ℜ
{
R−1ymfb

})
= sgn

(
ℜ
{
R−1RFAb+R−1z

})
= sgn (ℜ{FAb+w}) . (9)

Thus, from (5), the decision variable for kth user may be
individually obtained as

ℜ
{(

R−1y
)
k
e−jθk

}
, (10)

where (·)k selects the kth element of the argument vector.
The Decorrelator detector presents a gain in the performance,
in relation to the Conventional detector, although the power
associated to the noise term, obtained at the Decorrelator out-
put, is always bigger or equal to the noise term obtained at the
Conventional output. Another linear detection method known
in literature is the MMSE detector, proposed for CDMA
systems in [3]. This method is based on the appropriate choice
of a linear transformation vector, tk = (t1, t2, . . . , tK)

T,
that minimizes the mean square error between the kth user’s
information bit and the kth linear transformations output,
tkymfb, resulting in:

min
tk

E
{
(bk − tkymfb)

2
}
. (11)

The vector that minimizes (11) involves the covariance of
colored noise z and the estimated amplitude of the users in
the receiver, B = |C|A. By applying this solution to the joint
detection of the K users, the K×K transformation matrix T
is given by:

T =
[
R+ σ2

nB
−2

]−1
. (12)

Therefore, the output vector of the linear MMSE detector
follows the decision:

b̂mmse = sgn (ℜ{Tymfb}) . (13)

III. POLYNOMIAL-EXPANDED MULTIUSER DETECTORS

The computational complexity of the linear MuDs, which
originates in the operations associated to the cross-correlation
matrix inversion, grows with the third order of the matrix
size, i.e., O

(
K3

)
. However, the inverse matrix R−1 can

be approximated through the polynomial expansion method,
resulting in the polynomial-expanded multiuser detector (PE-
MuD), with complexity of O

(
K2

)
. The resulting information

estimated vector is given by:

b̂pe = Lpey, (14)

with Lpe being the iterative polynomial expansion for the
linear transformation factor T of a specific linear detector:

Lpe =

Nt∑
i=0

αiT̃
i, (15)

where Nt indicates the number of terms of the polynomial
expansion in the PE-MuD detector, αi denotes the coefficients
for the series convergence rate, and T̃ describes the transfor-
mation matrix for the linear multiuser detectors Decorrelator
or MMSE.
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A. Polynomial Expansion via Neumann Series

By using the Neumann series expansion method [5], the
inverse cross-correlation matrix R−1 may be approximated:

R−1 ≈ α

Nt∑
i=0

(IK − αR)
i
, ∥IK − αR∥ < 1 (16)

where IK is a identity matrix of size K, and the associated
residual error is:

εεεRinv = α
∞∑

i=Nt+1

(IK − αR)
i
. (17)

In turn, the transformation factor of the linear MMSE detector,
defined by T =

(
R+ σ2

nB
−2

)−1, may be approximated in:

(
R+ σ2

nB
−2

)−1 ≈ α

Nt∑
i=0

[
IK − α

(
R+ σ2

nB
−2

)]i
. (18)

In the Equation (16), the convergence factor of the Neumann
series is equal to the spectral radius1 of the matricial operator,
ρ (IK − αR). Therefore, the series converges if the spectral
radius’ value is less than one [8]. As a consequence, the series
converges with any scalar α which satisfies

0 < α <
2

|λmax|
. (19)

For the case of linear MMSE detector, the convergence factor
is defined here with the premise that the users’ amplitude
estimated matrix is B = IK , as follows:∥∥IK − α

(
R+ σ2

nIK
)∥∥ < 1.

Therefore, the parameter α that allows the convergence of the
MMSE detector’ approximation is found in the interval

0 < α <
2

|λmax + σ2
n|
. (20)

B. Optimum Value of the Parameter α

Since the convergence factor of an iterative method can be
associated with the matricial operator’ radius, the convergence
ratio of this method is related to the dimension of this
radius [8]. For the matricial operator which approximates the
Decorrelator, the scalar α that optimizes the spectral radius is
achieved by the equation:

αdec
opt =

2

λmin + λmax
. (21)

For the case of linear MMSE detector, the optimum value of
α is given by:

αmmse
opt =

2

λmin + λmax + 2σ2
n

. (22)

1Spectral radius of a matrix corresponds to the absolute value of its greater
eigenvalue.

C. Gerschgorin Circles Theorem
The optimum value of α can be estimated, by using the

Gerschgorin circles theorem [5]. According to this theorem,
any eigenvalue of a matrix R, with elements ri,j , ∀i, j, is
situated in one of the complex plan’ circles that are centered
in ri,i, with radius

∑
i,j ̸=i

|ri,j |, i.e.,

|λi − ri,i| ≤
∑
i,j ̸=i

|ri,j | . (23)

Thus, through a simple calculation, by using the elements of
R, the approximated values of λmin and λmax, which are
denoted by λ̂min and λ̂max, respectively, can be achieved by:

λ̂min ≈ min

ri,i +
∑
i,j ̸=i

|ri,j |

 , ∀i, (24)

λ̂max ≈ max

ri,i +
∑
i,j ̸=i

|ri,j |

 , ∀i. (25)

The Gesrchgorin circles (GC) theorem allows a considerable
reduction in the complexity of the minimum and maximum
eigenvalues’ calculation, being, therefore, adopted in this
work.

IV. LOCAL SEARCH METHODS APPLIED TO THE
MULTIUSER DETECTION

Local search methods propitiate the attainment of near-
optimum solutions from searches guided in subspaces of the
optimization problem’ dimension. The deterministic algorithm
1-opt LS (one-optimum local search) performs a search for the
vector that maximizes the cost function, selecting candidate
vectors situated in the unitary Hamming distance2 from the
output vector of MFB. The pseudo-code for the local search
algorithm 1-opt LS can be seen in [9]. In the following, an
adaptation for the 1-opt LS algorithm is proposed and a new
algorithm is formed.
A. Local Search Algorithm 1-adapt LS

The quantity of calculations of the cost functions during
the search for the best candidate vector can be limited by
using a given threshold. Chase establishes a threshold criterion
based on channel measurement informations, by selecting a
fixed number of the lowest confidence bits to be changed
[10]. Differently of Chase search stop criterion, herein for
the proposed 1-opt LS algorithm, a dynamic threshold is
used in order to create adaptation and reduce complexity.
This new algorithm, namely one-adaptive local search (1-
adapt LS), classifies the received signals in order of increasing
amplitude. Then, candidate vectors with unitary Hamming
distance are generated, following the ordering of the signals
(from the weakest to the strongest), and their respective cost
functions are evaluated. In case of the cost function value is not
increase following a pre-established quantity of consecutive
evaluations, denoted by κ, the search process is interrupted and
a new search is initiated. The pseudo-code for the algorithm
1-adapt LS is described in the Algorithm 1.

2Hamming distance between two vectors, e.g., b1 and b2, is defined by
dH (b1, b2) = ∥b1 − b2∥, which corresponds to the amount of elements
that differ between the vectors.
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B. Hybrid 1opt-LS-MuD and 1adapt-LS-MuD Detectors

The detection structure presented in [7] has been reproduced
herein, by deploying in the first stage, the polynomial MMSE
detector with α estimated via the Gerschgorin circles method,
and in the second stage, the 1-opt LS algorithm. The perfor-
mance results achieved by this Hybrid 1opt-LS-MuD detector
are presented in Subsection V-A.

It is worth noting that this work introduces for the first
time a multiuser detector constituted by the polynomial MMSE
detector followed by a new local search algorithm 1-adapt
LS, namely the Hybrid 1adapt-LS-MuD. In subsection V-A
a performance comparison including both hybrid sub-optimal
multiuser detectors have been carried out.

Algorithm 1 1-adapt LS

Input: b̂conv, Nit, κ; Output: b̂
begin
1. Initialize the local search: t = 1, l = 0;

bbest [1] = b̂conv;
gbest [1] = Ω (bbest [1]);
gref [1] = gbest [1];

2. for t = 1, . . . , Nit,
while l < κ,

a. Classify signals (increasing amplitude order), given:
Ai [t], i = 1, . . . ,K, com Ai [t] ≤ Ai+1 [t];

b. Generate candidate-vectors with unitary Hamming
distance denoted by bi [t], i = 1, . . . ,K;

c. Calculate gi = Ω(bi [t]);
if gi [t] > gbest [t],

gbest [t]← gi [t];
l = 0;

else
l = l + 1;

end
bbest [t+ 1]← bi [t];
gref [t+ 1]← gbest [t];
end

end
if gref [t+ 1] = gref [t], go to step 3
end

3. b̂ = bbest;
end

V. PERFORM ANALYSIS

In this section, the performances of the sub-optimal MuDs
are evaluated, by means of Monte Carlo simulation (MCS)
method. The flat Rayleigh fading channels, which magnitude
and phase coefficients are perfectly estimated at the receptor
side, have been adopted. The average signal-to-noise ratio
(SNR) considered in simulations ranges from 0 to 40 dB.
In all numerical results presented in this section, the average
SNR, denoted by SNRavg, is deployed in the context of
the near-far effect, i.e., there are two interfering group of
users with near-far ratio NFR = Pinterf (dB) −Pinterest (dB)
= +5 dB (K/3 users), and K/3 users with NFR = −5 dB.
Hence, the average SNR and bit-error-rate (BERavg) presented
in this section is taking over the interest users group only
(K/3 users). The adopted processing gain of the DS/CDMA
system was N = 36. Furthermore, the number of terms in
polynomial expansion is limited to Nt = [1; 7] terms, while
the number of local search algorithm’ iterations is limited to
Nit = [0; 10] iterations. Besides, in the algorithm 1-adapt LS,

a good performance-complexity trade-off was achieved with
κ = ⌈0.6 ·K⌉.

A. 1opt-LS-MuD and 1adapt-LS-MuD

Fig. 1 and 2 show the average BER and the average quantity
of cost function calculations by iteration (ζavg), respectively,
for the 1opt-LS-MuD and 1adapt-LS-MuD, as a function of an
increasing number of users (system loading robustness). Both
figures were obtained from the same MCS setup, considering
the same point of system operation and SNRavg = 14 dB. In
this scenario, the quantity of active users in the system ranges
from K = [9; 36] users, i.e., system loading lies on the range
L = 100 ·K/N = [25%; 100%].
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Fig. 1. Comparison between 1opt-LS-MuD and 1adapt-LS-MuD detectors,
in the flat Rayleigh channel and SNRavg = 14 dB.
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Fig. 2. Average quantity of cost function calculations necessary in the 1opt-
LS-MuD and 1adapt-LS-MuD; SNRavg = 14 dB.

Except in the region of low system loading L ≤ 33%,
the performance of 1opt-LS-MuD and 1adapt-LS-MuD de-
tectors with 1 iteration are practically identical. Taking into
account K = 30 users in the system (L = 83, 3%), the
BER performances of the evaluated detectors are very close.
Nevertheless, the complexity of the second detector is smaller,
according to Fig. 2. By loading the system in 75%, the value
of ζavg accomplished for 1adapt-LS-MuD detector with three
iterations is 11% smaller in relation to 1opt-LS-MuD detector,
although with a relative increase of 7.1% in the BERavg of the
detector with lower complexity. However, as one can conclude
from Fig. 1, nether the proposed Hybrid local search PE
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multiuser detectors (1opt-LS-MuD and 1adapt-LS-MuD) nor
the Linear MMSE are completely robust against the system
loading (MAI) increasing.

B. Hybrid 1adapt-LS-MuD Detector

As shown in Fig. 3, the Hybrid 1adapt-LS-MuD detector
with 1 term in the polynomial expansion does not converge
to the ML detector; while with 5 or 7 terms and κ = ⌈0.6 ·
K⌉, the convergence is guaranteed within 2 iterations. On the
other hand, with Nt = 3 terms, the performance of the Hybrid
1adapt-LS-MuD detector is nearly optimum within Nit = 3
iterations.

0 2 4 6 8 10

1E−0.9

1E−1.0

1E−1.1

1E−1.2

1E−1.3

1E−1.4

1E−1.5

1E−1.6

1E−1.7

Iterations

B
E

R
a
v
g

 

 

ML Detector
Conventional
1adapt-LS-MuD
Hybrid PE-MMSE 1 Term & 1adapt-LS-MuD
Hybrid PE-MMSE 3 Terms & 1adapt-LS-MuD
Hybrid PE-MMSE 5 Terms & 1adapt-LS-MuD
Hybrid PE-MMSE 7 Terms & 1adapt-LS-MuD

Fig. 3. Convergence of the Hybrid 1adapt-LS-MuD detector in the flat
Rayleigh channel and SNRavg = 14 dB; K = 9 users.

Fig. 4 shows the near-far robustness of the Hybrid 1adapt-
LS-MuD detector, in comparison with the polynomial and
the linear MMSE detectors. In this simulation, Kinterf = 4
and Kinterest = 4 users have been considered. One can see
that both Linear MMSE and the proposed Hybrid 1-adpat-LS
MuDs are extremely robust against the NFR effect.
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Fig. 4. Near-far effect resistance of the Hybrid 1adapt-LS-MuD detector, in
the flat Rayleigh channel and SNRavg = 14 dB.

Fig. 5 shows that the Hybrid 1adapt-LS-MuD detector with
Nt = 1 term keeps its performance close to that achieved
by the linear MMSE-MuD up to SNR = 12 dB, i.e., in the
low-medium SNR region. However, with Nt = 3 terms, this
performance is extended up to SNR = 32 dB. These results
represent an excellent performance-complexity trade-off for
the proposed hybrid adaptive local search multiuser detector.
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Fig. 5. Hybrid 1adapt-LS-MuD detector performance, in the flat Rayleigh
channel; Algorithm 1 with Nit = 3; K = 9 users.

VI. CONCLUSIONS
The proposed local search algorithm 1-adapt LS promotes

a remarkable gain in the DS/CDMA system performance
equipped with polynomial expansion-based hybrid multiuser
detectors. When associated to low-complexity PE-MuD de-
tectors, it provides reliability to the detection process, without
an excessive increasing in its implementation cost, been able
to offer a good performance-complexity trade-offs.

Simulation results have shown that the proposed 1-adapt
LS is able to provide a considerable level of robustness
against the near-far effect when combined to the PE-MuD.
Furthermore, this hybrid detector achieves fast convergence
by using only three terms in the polynomial expansion, with a
remarkable trade-off between near-optimum performance and
reduced complexity, specially when the detector operates in
scenarios with medium or low system loadings and moderate
or low NFR.
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