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Blind Equalization Based on Complexity Measures:
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Abstract— This work investigates an alternative approach to
the problem of blind equalization. The approach is based on
complexity measures and is inspired by preceding successful
application of the same framework to the problem of blind source
separation. We draw the relationship between algorithmic com-
plexity, a measure for randomness within the area of algorithmic
information theory, and recurrence quantification analysis, a tool
for recurrent structure analysis of dynamical data. The evaluation
of the hypotheses is carried out in the context of chaotic signals.
The results show that such approach is effective under some
circumstances (minimum-phase or stable and invertible channel).
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I. INTRODUCTION

Intersymbol interference (ISI) is a problem that may affect
information transmission in communication systems. It can be
seen as the effect of a system (channel) operating over an
information signal s(n). The received signal x(n) is, therefore,
a distorted version, which can compromise the process of
message reconstruction. The main goal of equalization is to
counterbalance the channel effects by means of the use of an
appropriate filter, the equalizer [1].

Unsupervised (or blind) equalization is interesting in that
it does not require the availability of a desired sequence
during parameter adaptation. There are many unsupervised
approaches, including the Bussgang and Shalvi-Weinstein fam-
ilies [2]. Interestingly, the very rich notion of algorithmic
complexity allows an alternative path to be followed. The basic
idea, founded on the works of Pajunen [3] and Soriano et al.
[4] about blind source separation, is to consider the superpo-
sition of different versions of a signal as being more complex
than the signal itself. This creates a novel framework for
channel inversion, which was initially and partially analyzed
in [5]. This work can be seen as an extension of these efforts
towards a more general view of the novel framework and of
its concrete possibilities. It is our belief that this extension
is of relevance, as this alternative to classical theory has the
potential of leading to theoretical and practical insights and
to a natural treatment of the problem of deterministic signal
processing.
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The work is structured as follows. In section II, it is
discussed the notion of algorithmic complexity and it is shown
how to estimate it by means of recurrence plots and data
compression. In section III, we deal with the problem of blind
equalization based on complexity measures in the context of
chaotic signals. Section IV exhibits some results of numerical
experiments. Finally, section V brings the conclusions.

II. ALGORITHMIC COMPLEXITY AND ITS ESTIMATION

A. Algorithmic Complexity
Compared to Shannon’s notion of information, algorithmic

complexity (AC) is a paradigmatic shift in the realm of
information theory. In his seminal paper, Shannon [6] was
concerned about the average information content of a source,
which is built upon a set of messages and is associated with
the concept of entropy. In simple terms, entropy measures the
“uncertainty” of a random variable based on its probability
distribution.

From a different perspective, Kolmogorov was interested in
the information content of a single message [7] and, almost
at the same time, Chaitin devised a manner to quantify the
randomness of a string, i.e., a sequence of symbols [8]. Both
ended reaching similar and intuitive idea. This idea is sum-
marized in the concept of AC, which is defined with respect
to a finite binary string s as the size of the shortest computer
program that calculates it. This task must be accomplished
with no additional information (there are no external inputs to
the program).

AC is easily stated, however the problem with it is that it is
not computable by a Turing machine [7]. Nonetheless, due to
an intrinsic link with the concept of “randomness”, there are
efficient practices to estimate the complexity of a string. A
purely random sequence needs significant information to be
exactly replicated, and the computer program that generates
such a sequence is, potentially, as large as the sequence itself
[8]. On the other hand, non-random sequences contain patterns
that can eventually be exploited to reduce the program size.

Compression algorithms try to compact binary sequences by
finding an efficient code based on the underlying data patterns.
Lossless methods can do it without discarding any information.
Although the success of a compression task depends on the
data being analyzed, lossless compression methods shorten
structured sequences and give a reliable measure of their
complexity. It must be said that a great variety of compression
algorithms work only on integer data. This is the case e.g. of
the famous Lempel-Ziv algorithm [7].

In the following, we turn our attention to another approach
to quantify “complexity” that has its roots in the field of
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XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP

(a) (b) (c)

Fig. 1: Recurrence plots shows underlying recurrences in the data. Chosen parameters values, de = 2, τ = 2 and ε = 0.4.
Number of samples for each signal is 300.

dynamical systems: recurrence plots (RPs). They emphasize
underlying structures of the data and can be coded by lossless
compression methods.

B. Recurrence Plots

In dynamical system theory, it is usual to employ RP to
analyze non-linear data. Fundamentally, an RP is a binary
square matrix that expresses recurrent structures if they are
present in the data. It is constructed by taking the distance
between two state space vectors: whether the distance is below
a threshold ε, the corresponding element in the matrix is
set to one, and, visually, represented as a black point [9].
Otherwise, the element value is zeroed and a white point is
used. Mathematically, it is represented by:

ri,j =

{
1, if ‖xi(k)− xj(k)‖ < ε
0, otherwise

(1)

for i, j = 1, ..., N , where ri,j is the element in the i-th row
and j-th column of the matrix, N is the number of state space
vectors, and x(k) is the state space vector defined as:

x(k) = [x(k) x(k − τ) ... x(k − (de − 1)τ)] , (2)

in which de is the embedding dimension and τ the lag between
samples. One of the most common norm used to calculate
the distance between the state space vectors is the L∞-norm
(maximum or supremum norm) [9].

Due to the way it is constructed, the RP is a symmetric
matrix with a main diagonal composed of black points. To
illustrate, we compare the RPs of three distinct time series. The
first is a sinusoidal signal, s(n) = sin(0.05n). The recurrent
property of this signal is clearly characterized by the long and
parallel diagonals in Figure 1a. The second is a chaotic signal
obtained from the logistic map, a discrete nonlinear dynamic
system. The time series of this signal is obtained from (3):

xn+1 = αxn (1− xn) , (3)

with α = 4. The RPs of chaotic signals display typically short
but parallel diagonals as can be seen in Figure 1b. The last

figure (Figure 1c) corresponds to the RP of a white Gaussian
noise: its RP displays a homogenous distribution of black
points.

To apply lossless compression methods to the RPs, firstly
the columns of the matrix are concatenated to make a string:
by doing this step, we guarantee that observed recurrent
structures are explored in the compression task. The binary
sequence obtained from the RP is then compressed using ZIP
compression. The zipped file size is compared to the size of
the original string, giving the following measure:

ZIPindex =
sizeZIP

sizeoriginal
. (4)

Another way to estimate the complexity of RPs is by
using the mathematical tool of recurrence quantification anal-
ysis (RQA) [9].Within this framework, complexity may be
estimated by analysis of diagonal structures or density of
recurrence points of the RP. One metric obtained from such
analysis is the recurrence rate (RR), which indicates the
aforementioned density and is expressed by the equation:

RR =
1

N2

N∑
i,j=1

ri,j , (5)

where N is the number of rows of the recurrence plot. Another
metric is the determinism (DET), a measure of the organization
of diagonals in longer structures, typical of regular observa-
tions, based on the size l of the diagonals and their histogram
(P (l)). The equation for DET is:

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

, (6)

lmin is the minimum diagonal length to be considered (lmin ≥
2). The values of RR and DET are higher for deterministic
signals. These quantities are as viable as the compression
method when it comes to estimating complexity in the context
of BSS [10].
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III. BLIND EQUALIZATION BASED ON COMPLEXITY
MEASURES

To invert the effects of the channel employing complexity
as a metric to guide the equalizer design, we assume that the
complexity of the distorted signal x(n) is higher than that of
s(n). This assumption goes hand-in-hand with those presented
in the case of BSS both by Pajunen [3] and Soriano et al.
[4], [11]. We hypothesize that equalization is possible only in
the case of minimum-phase (zeros are inside the unit circle)
or stable (poles are inside the unit circle) channel and if the
zero-force conditions are satisfied (channel and equalizer are
inverse of each other).

In Figure 2, we analyze the behavior of sending the chaotic
signal obtained from the logistic map through FIR and IIR
channels. The chosen parameters for the generated RPs are
de = 1, τ = 0, ε = 0.4, and the number of samples is
1000. All generated signals are normalized (zero mean and
unit variance). The FIR model of the channel is (7):

HFIR(z) = cos(θ)− z−1 sin(θ), (7)

and the IIR model is (8):

HIIR(z) =
1

cos(θ)− z−1 sin(θ)
, (8)

both parameterized in θ. The figure shows the complexity
measures of the signal before (horizontal dashed black line)
and after being transmitted through FIR and IIR channels. The
rectangles in yellow delimit maximum-phase regions for the
FIR filter and unstable regions for the IIR filter. In this last
case, the amplitude of the transmitted signal diverges, and
the consequence is that the generated RPs are “corrupted”
and no relevant information can be inferred from them. The
figure corroborates what was hypothesized above. It is also
interesting to note that, given the same number of coefficients,
the ISI in the case of the IIR channel is more severe than that
of the FIR channel, supporting what was stated in [12].

Furthermore, it is important to emphasize that the RPs are
extremely sensible to the values of the parameters. There are
several methods and rules of thumb that can be employed
to calculate them. For example, the embedding dimensions
may be chosen by means of the concepts of false nearest
neighbors and mutual information [9]; the threshold, in turn,
may be chosen between 20% and 40% of the signal’s standard
deviation [13]. Despite this, their values depend on the nature
of the problem being treated [14] and, clearly, on the signal
itself. There is no absolute consensus on how to choose
the most appropriate values, especially to the problem of
equalization.

It is worth mentioning that, for some configurations of the
parameters, the hypothesis of complexity increase does not
hold: the signal seems to undergo an apparent reduction in
this quantity. Such an event may be observed in Figure 3 for
the FIR channel. In this case, the values of de and τ are set
to 2 and 1, respectively, while the value of the threshold is
maintained equal to 0.4.

Fig. 2: ZIPindex for a chaotic signal sent through a FIR and an
IIR channels. The dashed line corresponds to the complexity
measure of the source signal (the signal is normalized). The
region in yellow delimits the values for which the zeros or the
poles of the filters are outside the unit circle. It is important
to note the increase in the complexity measure for both of the
channels: outside the yellow rectangles, the complexity of the
transmitted signal is higher than that of the original one.

Fig. 3: The same ZIPindex as before (Fig. 2). The complexity
is not correctly estimated due to the values of the parameters
of the RPs. The signal undergoes a reduction in its complexity
along the transmission process through the FIR channel even
in minimum-phase regions (outside the yellow rectangles).

IV. RESULTS OF MATHEMATICAL SIMULATIONS

In order to exemplify the equalization process based on
complexity measures, we show next (Figure 4) the results
of recovering a chaotic source (logistic map). Two cases are
considered: 1) the FIR equalization of an IIR channel, and 2)
the reverse i.e. the IIR equalization of a FIR channel. The
channels are modeled as (7) and (8) with θ = π/6. The
values of the parameters de and τ are fix and equal 1 and 0,
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respectively. Thus, no embedding is considered and each state
space vector is composed of a single sample. The threshold ε
varies from 0.1 to 0.5 with a step of 0.1, and the number of
samples of the signal is 1000.

Equalization is performed by an exhaustive search in the
parameter θ - now the parameter of the equalizer. Its values
are confined to the minimum-phase or stable region ranging
from −π/4 to π/4 and a step of π/400 is considered. A careful
attention must be paid to values around the vicinity of the unit
circle, mainly for the IIR implementation of the equalizer. The
figure shows that minimum complexity is attained at θ = π/6,
where the order of magnitude of the mean squared error is
10−6.

V. CONCLUSIONS

In this work, the viability of employing complexity mea-
sures to the problem of blind equalization was investigated.
A tacit assumption that must be acknowledged as a priori
information permeates the work: the signal being sent is
considered to have some type of recurrent structure that is
lost in the transmission process. From this point of view, the
modus operandi of the presented approach is very different
from that of the conventional ones, which resort to statistical
concepts.

As it was seen in mathematical simulations, when the
channel is minimum-phase (FIR model) or stable (IIR model)
and invertible, the source signal can be recovered perfectly.
Although the tools provided by means of using RPs are
powerful and simple, we stress that they are very sensible
to the values of the parameters and even to the number of
samples. This may mislead the adjustment of the parameters
of the equalizer. It would be of interest to carry further
investigation in different methodologies that are less dependent
on the parameters to estimate complexity and to evaluate their
applications to the blind equalization problem.

Finally, the problem of FIR equalization of a FIR channel
has proven to be, in our preliminary studies, quite challenging.
It remains as an open analytical task, which we intend to tackle
in the near future.
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