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Machine learning application for sensor failure
detection in polymerization process
Amaro A. de Lima, Gabriel M. Araujo, Igor S. Oliveira e Bettina D. Barros

Abstract— This work analysed the time signals from 5 in-
struments distributed in an industrial polymerization facility:
two temperature instruments, a water level instrument, a weight
instrument and a flow instrument. The dataset is composed by
a five years history with a sample rate of 1 minute. A specialist
using the event related industry report labelled the signals. The
results using random forest as the machine learning classifier
reached significant performance in detecting failures independent
of the instrument, preliminary indicating the suitability of the
framework.
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tion.

I. INTRODUCTION

Nowadays almost all of the industrial systems make use
of some measurement instrumentation in their production
process. A long with this technical evolution appears the need
to ensure that these indications are reliable, avoiding loss in
production or even an accident at work. An unreliable instru-
ment can provoke a mistaken decision leading to unexpected
production outages. Unplanned process halt is directly related
to losses in time, raw material and production. Many industrial
facilities are huge and complex making the characterization
of several kinds of failures by the machine operators a very
expensive and sensible to errors task.

Fault diagnosis and detection is an important tool of Process
Engineering and is the main topic of abnormal events man-
agement. The early detection and diagnosis of faults, while
the industrial process is still in operational conditions could
avoid the escalation of anomalous events and the reduction
of production loss. The estimated annual loss due to faults in
industrial instrumentation is about 20 billion dollars a year.
Therefore, a great interest, from the academic researchers to
industry workers, came up in this area, which was not observed
in the past decades.

The polymerization industry had a remarkable growth all
over the world in the past decade, for instance; only in Brazil
the consumption of Polyethylene terephthalate (PET) resin,
the main manufacture of a polymerization industry, had an
increase of 2200%. In 2005, it was estimated that 32% of this
polymer world production was designed to the manufacture of
food packing and bottle, and the remaining 68% was destined
to the production of polyester staple fibre, which is a compo-
nent widely used in making fabric, clothes, shoes, upholstery
furniture as many other products [1]. Only in the state of São
Paulo (Brazil) the polymerization industry raised about 2.2
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billion dollars in 2005 [1]. Considering the importance of the
polymerization industry in modern life products and economy
the mitigation of instrumentation failures in this industry,
which could also be related to the machinery associated to
the process as pumps, fans, motors and many others, is of
fundamental relevance and will be addressed in this work as
a case study.

This work analysed the time signals from 5 instruments dis-
tributed in an industrial polymerization facility; 2 temperature
instruments to monitor the water temperature in the cooling
process going through the pumps; a water level instrument to
check if the water reaches an electronic component; a weight
instrument to evaluate the amount of manufactured products;
and a flow instrument to measure the fluid flow through the
pipes. The data was collected in a 5 years history of all
instruments with a 1 minute sample rate simultaneously. A
specialist using the event related industry report labelled the
signals.

The failure detection system has four steps and the clas-
sification, performed by using random forest as the machine
learning classifier, reached over than 98% of global accuracy
in detecting failures independent of the instrument.

The remaining of this paper is organized as follow. Next sec-
tion some related works are presented. A detailed description
of the proposed system, as well as the dataset and the failure
characterization is in Section III. Results and discussions about
them are in Section IV. In Section V we have the conclusion.

II. RELATED WORKS

The work [2] describes a method that uses Principal Com-
ponent Analysis (PCA) and Artificial Neural Networks (ANN)
to evaluate the conditions of mineral filter dispersion in a
polymer matrix. Ultrasound instruments, pressure instrument,
thermocouple and the electrical current of the extruder motor
drive were the variables monitored by the system. The PCA
algorithm were used to reduce the dataset dimensionality
before applying to the ANN classifier aiming to determine
the dispersion state of the filter. The system reached 10%
chance of estimating dispersion index with error larger than
0.05 obtaining an efficient performance.

The approach proposed in [3] describes a technique to
deal with multivariate high dimensional data in industrial
applications. The idea is to use a Genetic Programming (GP)
based algorithm that has built-in a mechanism to select the
variables related to the problem during the simulated evolution
and gradually ignore the variables that are not, which could
possibly facilitate the industrial data analysis and applicability.

An extensive dataset for process monitoring focused in
fault detection and identification is proposed in [4]. Although
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its study case is penicillin production, different from ours
that is polymer production. The material draws interesting
aspect on the dataset to consistently evaluate the detection and
identification aspects in a system production.

A study on anomaly detection from instrument data applied
to petroleum industry applications is addressed in [5]. It
proposes the usage of One-Class Classifier (OCC) combined
to Yet Another Segmentation Algorithm (YASA) to efficiently
detect anomalies in turbomachines, which are machines, usu-
ally found in oil platforms, that are responsible for electrical
power generation. The work compared the efficiency of the
proposed approach with several techniques in a qualitative
way, without evaluating numerically the performances differ-
ences.

A very interesting work that has some common aspects to
ours is presented in [6]. It is focused in big data problem that
is related to heterogeneous multi-instruments acquisition, high
dimensional and large amount of data to monitor a polymer
production plant. The work investigates the applicability of
novelty filtering, anomaly detection and One-Class Classifier
(OCC) to detect abnormal behavior in production lines that
could be due to instrument fault, environmental influences, and
unexpected raw material properties’ deviations. The system
obtained 99% accuracy using OCC for 160 instruments data
collected during 3 months with 1 sample per minute.

III. PROPOSED SYSTEM

A. Dataset

The dataset used in this work was acquired from a poly-
merization plant through PI system from OSI®. The dataset
was composed by the signal from the five instruments: FT-
80001, LZT44032, TT-25867, TT23002C, WT-25005. Each
signal is composed by 3, 153, 285 samples from 02-Jan-2010,
02:00:00h to 31-Dec-2015, 20:44:00h. The sample rate is
1 sample/min. So, the whole dataset is composed by two
matrices with size 3153285 × 5. One is the data from the
instruments organized in a matrix, whose each column is a
signal from a instrument. The second matrix is the respective
failure label, that was manually annotated by a specialist. This
dataset is highly unbalanced, since a failure of any type (as
described in Section III-B) is a rare event.

B. Failure characterization

In this paper, a Fault is defined as an undesirable event in an
instrument or process which can lead the plant to instability or
loss condition. It worth mention that the faults characterized
here in this section are only part of the types of fault that can
occur. However, the objective is to illustrate the main types of
faults found in this case of study.

1) Inadvertent change in a model’s parameter: When a
control parameter is modified several disorders can occur,
which lead to instability in the process. In Figure 1 (a), one
can observe a normal behaviour in temperature indication of
the water used to transport the grains formed in the process of
polymer extrusion. In Figure 1 (b), there is another example
of the same variable, now with an abnormal behaviour, after a
change in the parameters of the PID controller by an operator.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

  T
em

pe
ra

tu
re

  (
o C

)

Time (minute)

(a)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

  T
em

pe
ra

tu
re

  (
o C

)

Time (minute)

(b)

Fig. 1. Examples of fault due to an inadvertent change in the parameters of
a PID controller by an operator: (a) normal behaviour in the signal from the
temperature instrument TT25867; (b) abnormal behaviour in the signal from
the same instrument after the change.

2) Structural faults: Structural faults are related to hard-
ware elements from a process, such as: failure in the con-
trollers hardware, broken ducts, stuck valves, leaks, water in
the electronics of a field instrument etc. Figure 2 shows the
moment that a level instrument fail. It was verified later the
presence of rain water in the electronics compartment. One
can note that the indication, as a percentage of the maximum
level, rapidly goes to the end of scale.

3) Malfunctioning in instruments or actuators: Some in-
struments provide essential signals to plant control. A fault
in one of those can potentially lead the plant to a condition
beyond a acceptable, unless detected in time. The speed in
detecting such a failure can severely affect the plant perfor-
mance. In Figure 3 (a), there is an example of a temporary
failure in the instrument measuring the temperature in the
polymerization reactor. In Figure 3 (b), one can note the
moment that an actuator, which controls the opening of a valve
that feeds an weighing scale, stuck in open mode. At this very
moment, a excessive load of product is added to the weighing
scale, increasing mass indication.
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Fig. 2. Level indication from a LT-44032 (level instrument) goes to the end
of scale due to rain water in the compartment containing the electronics of
the instrument.
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Fig. 3. Instrument failure examples: (a) temporary failure in temperature
instrument TT-23002C; (b) product overweight due an actuator failure in
instrument WT25005.

4) Zero shift error: There are faults related to a mal-
functioning in some instrument. In Figure 4 (a) there is a

signal from a flow meter in normal condition. After stopping
the product flow, it indicates a zero mass flow. In Figure 4
(b), a bad contact in inner connections of a flow meter lead
to an elevation in instantaneous mass flow indication. As a
consequence, it caused an inventory error in a liquid gas
sphere. It could illustrated by the discharge from a ship, in
which is necessary to assess the inventory coming from it
through the total of mass flow measurements. After the end
of the operation the flow should stabilize in zero. This is
the expected behaviour whenever there is an interruption of
product flow from the ship to the plant. However, when the
flow is interrupted and the instrument holds an instantaneous
measurement different from zero. It causes a difference in
the total of the inventory of the ship in the next discharge,
since the difference to zero of the flow indicated in the last
one is summed to the instantaneous measurements in the next
discharges.
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Fig. 4. Failure example in mass flow instrument FT80001A: (a) mass flow
meter in normal condition; (b) mass flow meter with zero shift error.

5) External failure: There are some cases in which the
failure is related to external factors, since those ones are not in
the plant domain. In Figure 5, one can see that a transient in
the supplied energy caused a failure in the frequency inverter
that feeds a recycle pump in a polymerization reactor. This
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failure could be detected through the variation in the current
indication from a pump motor.
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Fig. 5. Variation in instantaneous current in electrical feed of a pump motor
using instrument IT23004.

C. Proposed system

The proposed system is depicted in Figure 6. Each part of
the system is detailed in the next subsections.

Raw
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Annotation

Feature
Space
Mapping

Global
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Fig. 6. Block diagram of the proposed system.

1) Interpolation: One of the characteristics of the raw data
extracted from PI System® is that each instrument has its own
sample rate. As a matter of fact, in order to save storage, this
sample rate is not constant. Since each sample has a time-
stamp related to it, we employed a linear interpolation to have
all instrument with the same constant sample rate.

2) Manual annotation: Once all interpolated signals from
each instrument has the same constant sample rate with aligned
time-stamp, an specialist in the plant analysed in this work
manually annotated each failure according to the types of
failures characterized in Section III-B. Each instrument has a
binary vector with the same size of the signal. All the elements
of these vectors are 0 but in the places in which the indexes
are related failures in its respective instrument. In these places
of the vector label there is a 1.

3) Feature space mapping: The interpolated data is win-
dowed by a N-hour rectangular window with 50% of overlap.
In this scheme, each sample is N×5 matrix, since our dataset
has 5 instruments. If a window has more than 50% of its
samples labelled as failures, then it is considered as belonging
to fault classes. Otherwise it is considered as belonging to no-
fault class. The number of samples depends on the size of the
window N. The greater the window, the smaller the number
of samples.

4) Failure detection: The classification step is performed
by an ensemble learning method known as random for-
est [7] [8]. In this method, a set of decision trees are learned

by using an ensemble-meta algorithm known as bootstrap
aggregating (also known as Bagging [9]). In Bagging, random
subsets of the training set are used to train several instances
of a classifier which are combined to provide an improved
classification with reduced variance and overfitting. In random
forest, each split in each Decision Tree growing algorithm
uses only a random subset of the features. In other words, a
Bagging of features is performed in learning process of each
tree of the classifier. In doing so, the most important features
for the desired class are going to be selected in many of the B
trees. In this work, we used the default parameters of Matlab
implementation of random forest with 100 trees. The number
of trees was empirically obtained.

IV. RESULTS AND DISCUSSION

In order to assess the performance of the proposed method
we employed a k-fold cross-validation with 10 folds. In other
words, the data was partitioned in 10 parts, in which 9 were
used in training and 1 in test. This process was repeated up
to all 10 parts were used as test set.

A. Experiment 1
In this experiment, the time label vector, which is a vector

comprising the labels of fault (F) and no-fault (NF) for the
whole time period of 3,153,285 minutes, is windowed by a
24-hour rectangular window with 50% of overlap. If a specific
window sum more than 50% of the samples labelled as fault,
the window is also labelled as fault. The same is applied
to no-fault labelling. This settings generated 590 fault and
3787 no-fault windows. Each feature vector consists of the
concatenation of the 5 instruments data related to the time of
the corresponding window making a 7200 dimension vector,
which is a 24 hour (1440 minutes) multiplied by 5 instruments.

Table I shows the confusion matrix of the experiment 1
using window of 24 hours achieving the mean accuracy over
the folds of 98.9% and 91% in detecting the no-fault and fault
elements, respectively. It represents an overall system accuracy
of 97.8%.

TABLE I
EXPERIMENT 1 - CONFUSION MATRIX OF THE NO FAULT × FAULT

DETECTION PRESENTING THE CLASS ACCURACY AND ITS RESPECTIVE

STANDARD DEVIATION USING A 24-HOUR WINDOW.

Target Output classes (%)
No Fault Fault

No Fault 98.9± 0.56 1.1± 4.66
Fault 9± 0.56 91± 4.66

B. Experiment 2
In this experiment, the time label vector is windowed by a

12-hour rectangular window with 50% of overlap following
the same rationale as applied to experiment 1. These settings
generated 1187 fault and 7570 no-fault windows and vector
size of 3600 dimensions.

Table II presents the mean accuracy and standard deviation
over the folds in the format of confusion matrix for the
experiment 2, which uses a 12-hour window. The accuracy
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of no-fault, fault classes and overall system are 99%, 91.7%
and 98%, respectively. Compared to the previous experiment
the individual classes and the overall accuracies had some
improvement. Furthermore, it presented a reduction in the
standard deviation indicating a more precise experiment, i.e.,
the fold accuracies vary not so largely from the overall mean.

TABLE II
EXPERIMENT 2 - CONFUSION MATRIX OF THE NO FAULT × FAULT

DETECTION PRESENTING THE CLASS ACCURACY AND ITS RESPECTIVE

STANDARD DEVIATION USING A 12-HOUR WINDOW.

Target Output classes (%)
No Fault Fault

No Fault 99± 0.47 1± 2.49
Fault 8.3± 0.47 91.7± 2.49

C. Experiment 3
The experiment 3 applies a 6-hour rectangular window with

50% of overlap to the time label vector generating 2400 fault
and 15166 no-fault vectors with dimensionality 1800.

The mean accuracy and standard deviation over the folds in
the format of confusion matrix for the experiment 3, which
uses a 6-hour window, are detailed in Table III achieving
99.3%, 92.8% and 98.4% of accuracy for no-fault, fault
and overall classes, respectively. Once again, comparing to
experiments 1 and 2, the individual classes and the overall
accuracies got some improvement, while the fault class had a
slightly reduction in standard deviation. However no precision
change was observed in no-fault class.

TABLE III
EXPERIMENT 3 - CONFUSION MATRIX OF THE NO FAULT × FAULT

DETECTION PRESENTING THE CLASS ACCURACY AND ITS RESPECTIVE

STANDARD DEVIATION USING A 6-HOUR WINDOW.

Target Output classes (%)
No Fault Fault

No Fault 99.3± 0.48 0.7± 2.20
Fault 7.2± 0.48 92.8± 2.20

D. Experiment 4
A 1-hour rectangular window with 50% of overlap is used

in the experiment 4 and is applied to the time label vector
generating 16066 fault and 89041 no-fault feature vectors with
dimensionality 300.

The confusion matrix for the experiment 4 representing the
mean accuracy and standard deviation over the folds using a
window of 1 hour are shown in Table IV achieving 100%,
87% and 98% of accuracy for no-fault, fault and overall
classes, respectively. Comparing this performance to the ones
in experiments 1, 2 and 3, only the no-fault class presented an
improvement in accuracy. The fault and overall classes had a
significant accuracy reduction. The system precision was ever
better than the ones presented in previous experiments, with
lower variation around the mean accuracy.

The experiments 1, 2, 3 and 4 show the performances in
detecting the fault and no-fault classification cases with differ-
ent time length windows. Comparing the results, performance

TABLE IV
EXPERIMENT 4 - CONFUSION MATRIX OF THE NO FAULT × FAULT

DETECTION PRESENTING THE CLASS ACCURACY AND ITS RESPECTIVE

STANDARD DEVIATION USING A 1-HOUR WINDOW.

Target Output classes (%)
No Fault Fault

No Fault 100± 0 0± 0.66
Fault 13± 0 87± 0.66

and precision improvement are observed while the window
size is reduced, a partial exception is the experiment 4, where
only the fault and overall accuracy do not demonstrate it.
This search for the appropriate window size is intimately
related to the physical statistics associated to the industrial
process indicating that no-fault and fault are better statistically
represented with smaller windows. However, the interval of
windows from 6 to 1 hour should be better investigated,
because windows smaller than 1 hour seem to affect negatively
the fault class accuracy.

V. CONCLUSION

In this paper we propose describe a failure detection system.
A polymerization plant was used a case of study. The failures
was detected by analysing signals from 5 instruments in this
industrial plant. Each signal is composed by 3,153,285 sam-
ples from five years, which gives a 1 sample/min sample rate.
A specialist characterized the types of failures and manually
annotated them. In the classifications step of the proposed
system, we employed random forest and obtained a global
accuracy of 98.4% in detecting failures independent of the
instrument. As future work, other types of classifiers are going
to be employed and the problem of failure classifications (in
order to determine which failure just occurred) is going to be
addressed as well.
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