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Parameter Optimization in ACO-MuD DS/CDMA

José Carlos Marinello Filho, Reginaldo Nunes de Souza, andikTAbréo

Abstract—A simple and efficient methodology for tuning computational complexity [2], [3]. The use of heuristic s#a
the input parameters applied to the ant colony optimization algorithms is motivated by the fact that optimization prob-
multiuser detection (ACO-MuD) in direct sequence code division lems related to wireless communication systems results in

multiple access (DS-CDMA) is proposed. The motivation in using . L
a heuristic approach is due to the nature of the NP complexity non-polynomial (NP-hard) problems, e.g, MuD optimization

posed by the wireless multiuser detection optimization problem. Problem [4]. So, from a practical point-of-view, the chalie
The challenge is to obtain suitable data detection performance in is to obtain satisfactory results for these high computatio

solving the associated hard complexity problem in a polynomial complexity problems in a polynomial time. In the multiuser
time. Previous results indicated that the application of heuristic detection context, the heuristic based algorithms (HeubM

search algorithms in several wireless optimization problems t | d includes th uti .
have been achieved excellent performance-complexity tradeoffs most commonly used Includes the evolutionary programming

Regarding different system operation and channels scenarios, a (EP) based algorithms, specially the genetic algorithm&)(G
complete input parameters optimization procedure for the ACO- [2], [5], particle swarm optimization (PSO) [6], [7], antlooy

MuD is provided herein, which represents the major contribution  gptimization (ACO) [8] and the local search method (LS)
of this work. The performance of the ACO-MuD is analyzed [9], [10]. Furthermore, the input parameters optimizatii

via Monte-Carlo simulations. Simulation results show that, after the heuristic-based algorith is of ti t4
convergence, the performance reached by the ACO-MD is much € heurislic-based algorthms IS Of paramount importance

better than the conventional detector (CD), and somewhat clesto  Order to obtain reliable results. Specifically on MuD opti-
the optimum likelihood detector (OMuD). Flat Rayleigh channels mization problem, in [11] a detailed study about the input

is initially considered, but the input parameter optimization parameters of the particle swarm heuristic algorithm apiio
methodology is straightforward applicable to selective fading pg/cpmA multiuser detection problem has been conducted.
channels scenarios, as well as to joint time-spatial wireless Hence, present work aims to develop an input parameters
channels diversities. , N o
analysis for the ant colony optimization (ACO) heurist&skd

algorithm applied to DS/CDMA multiuser detection problem.

The first algorithm using the ACO heuristic approximation
was proposed in991 by Colorni [12], and since that many
variant algorithms were described in the literature. Régen

In the direct sequence/code division multiple acceshis ant behavior-based technique has been widely applied t
(DS/CDMA) technology, all the users share the entire frenultiple access multiuser detection [8], [13]-[15].
quency band available at the same time. This is possible duerhe computational complexity of DS/CDMA ACO mul-
the spreading sequence with short chip period, which is us@gser detection was analyzed in [13], noting that with a few
in order to spread the user information along all the avéglabiterations the ACO-MuD algorithm was able to reach the near-
bandwidth spectrum, as well as serves as an identificatioptimal performance spending only a small fractiea %)
code for each user, providing some level of multiple acces$ computational effort necessary to perform an exhaustive
interference (MAI) immunity. The application of sequencesearch. Furthermore, [8] analyzes the ACO-MuD applied to
with low cross correlation allows to support a considerabkyulti carrier DS/CDMA systems (MC-DS/CDMA). ACO-
number of users simultaneously, as well as the possibiliiguD in this context is able to reach the optimal perfor-
of operation in the asynchronous configuration mode, metingance, regardless the adopted number of carriers. An tieuris
the requirements of wireless mobile communication uplinlACO-based multiuser detector for space-time block coding
However, as the system loadinincreases, the utilization of (STBC) systems with receiver diversity was proposed in.[16]
sophisticated detectors become necessary, such as medti Bumerical results have indicated a very close performance
detection (MuD) [1], in such a way to obtain a reasonable the optimal one; also, the STBC ACO-MuD does not
separation among the several user’ signals, each one undep@sent the bit error rate saturation (BER-floor), a dediadla

intense multiple access interference level generate’byl performance effect that occurring at high SNR region.
interfering users. The best performance is achieved by the
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I. INTRODUCTION

optimum multiuser Detector (OMuD) or maximum likelihood Il. SYSTEM MODEL
(ML) detector, which}gomplexity grows exponentially withet  |n 3 DS/CDMA system deploying BPSK modulation under
number of usersQ(2") [1]. non-line-of-sight (NLOS) fading channels the time contins

In the last decade, proposals based on heuristic mefyseband signal at the receiver side can be described as:
ods have been reported to solve the MuD problem, getting

. . K
performance close to the ML performance with polynomial
r(t) = Abesk (t — ) hi (£) + X (£) 1)
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1The number of users by the processing gain ratiez K/N. andT, is the bit period;A; is the transmitted signal amplitude
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of the kth user, given byA, = %’: where E; is the bit transmitter, i.e., from the interest user receiver viewpait
energy andP, the power of the signal received by tti¢h BS, we have a single-input-single output (SISO) communica-
user;s;, is the spreading sequence assigned tokthth user; tion system, withK — 1 interfering users. So, the multiuser
b € {£1} is the k—th user's transmitted bit information, detection problem at the BS receiver side is constituted’oy
assumed independent and equiprobable distribuigdt) is possible candidate solutions in (3). This solutions are s8e
the complex channel coefficients for thth user, andy (t) is the algorithm as all the possibles vector-candidates is}r
the time continuous additive white Gaussian noise (AWGNat the ants can travel. The quality of each trail is evaidat
representing the thermal noise and other uncorrelatece no®y the cost function, defined in eq. (2). The algorithm steps
sources, with bilateral power density, /2. aiming to find a solution that maximizes (2), or analogously,
Multiplying the received signal by the spreading sequerice tnd the fastest trail for the ants until the food.
the interest user (matched filter to this sequence), theezenv The MFB outputs serve as initial information to the ants.
tional detector (CD) provides the information de-spregdin  So, the log-likelihood function (LLF) for theith user is
this way and using matrix notation, the output of the matche@k(+1) = 2R {+A(k)y(k)} — A(k)’R(k, k), where A(k) =
filter bank (MFB) isy = RCAb + x, wherey isthe K x 1 A(k, k)C(k, k) is the kth signal received amplitude, includ-
output vector,R is the K x K correlation matrix, C = ing the channel effects (fading, path loss and shadowing).
diag(cy, ca, ..., cx) the K x K channel coefficients diagonalThe desirability function is defined using the LLF function:
matrix, A is the diagonal matrix of received amplitudes, and Dx(£1) = 1 + e~£+(*1. From the desirability function, the
is the K x 1 vector containing one information bit for each useintrinsic affinity function is defined, which influences thrait
x is the sampled AWGNK x 1 vector with bilateral power decision of each ant along the algorithm iterations:
spectral densityN,/2. At the MFB output follows the hard

decisor which takes decision according to the signal pigtari m(£1) = [Di(+1) + Di(-1)]/ Di(£1) )
bca = sgn(y), where the modified signum functiosgn(.), The signals at the matched filter bank output are assumed
which returns the polarity of its input. as initial information. It is then necessary to take into sidn

The conventional detector for DS/CDMA uplink receivegration that the decision taken by the ants be influencedevy th
(MFB) considers the MAI as a additional background nois@gihs taken previously, which resulted in better resultss T
being not able to separate multiple access interferencelYM ay, the solution found by the algorithm will evolve alongth
from the interest signal. On the other hand, the multius_ﬁéraﬂons_ So, in order to quantify this evolution, thex &
detectors (MuD) takes advantage of MAI as a way to takes {fheromone tabl@® is created, in which the first row refers to
performance closer to the optimal. In [1], it was shown that t the probability of positive bits, and the second row refers t
optimal multiuser detector (OMuD), or maximum likelihoodne probability of the negative bits. Its elements are atited
(ML) detector, calculates the cost function of all the pblsi \ith probability A. Along the iterations, this table is being
candidate-solutions, and return as the optimal soluti@ t)jeq according to the quality of the paths taken by each ant
argument of the higher value found. The cost function cafyq g tendency, measured in terms of increasing probability
be expressed as: of that specific bit be 1 (positive bit) or 0 (negative bit).

() =R{2y"CTAY — 9T CARACH Y} 2) The first step of the table updating takes into account the
paths chosen by each ant in that iteration, and how sucd¢essfu

where}(.) is the real operator and the K x 1 information  heqe chooses were (measured by the cost function evaijiatio
bits candidate vector. Consequently, the estimated tréiesm A pheromone amount which is equivalent to the cost function

bit vector for the users is defined as: value regarding the path taken by the ant is multiplied by the
Eopt = arg max f(¥) Q) 7 coefficient, and incrementally accumulated at the resypecti
de{£1}K positions in theP matrix:

Since the optimal detector (ML) calculates the cost fumctio ) .
for all the possible solutions, it is immediate that its perf Piv1 =Pi+7- f(trail(m)) - T (trail(m)) ®)
mance grows exponentially with the users numhigibecause wheretrail(m) is the path taken by thesth ant in a given
the number of possible combinations is giveny. iteration andT (trail(m)) is a2 x K filled with 1 in the

[1l. HEURISTICACO-MuD positions related to the path taken by the ant @nih the

The ant colony optimization is based on the foraginathers' . .
behavior of the ant colony in nature. In search of food, the 1€ Second step of the table updating takes into account
ants of a colony are scattered randomly in their neighbathodh® Pest path found by the ACO-MuD algorithm until that
When an ant is successful in it search for food, it come bafoment, named hereifi.. ;. Similar to the adopted procedure
nest and leaves pheromones in the way. This pheromone Wiiithe first update stage, now, a pheromone amount which is
induce the other ants to take this same way in the search f§uivalent to the cost function ahy.. is multiplied by a
food, further strengthening the pheromone trail. If thecfa coefficiento and deposited at the respective positiongPof
thg end of a certai_n way runs out and the ants stops taking it, Pii1 =P;i + 0 fOvest) - T (9vest) (6)
this pheromone will be evaporated.

For BPSK signaling, uplink receiver side and just one Aiming to scape from possibles local optima (maxima), at
antenna at the base-station (BS) receiver and eaéh w$ers’ each new iteration, the pheromone table is multiplied by a
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coefficient(1 — ¢), beinge the pheromone evaporation rate: applied to the MuD problem considering the reverse link of
DS/CDMA systems under flat frequency fading channels and
Pit1=(1-¢)- P ™ gifferent mobility conditions for the mobile terminals. Mie-
Hence, an excessive amount of pheromone is avoided to &rlo simulation method is deployed in order to determirge th
accumulated over any possible trail. optimum values of the ACO-MuD input parameters2@dB
Once factors, which influence the path choice of the an®\NR, Gold spreading sequences with length (processing gain
along the iterations, have been defined, it is possible tmelefdl and system loadind.y, = 100 - & = 100% have been

the bit choice probability: adopted. For the others ACO-MuD parameters, the following
N 5 values have been assumed: initial pheromone probability,
Py(£1) = [Pr(£1)]" e (£1)] 0.01; population =30 ants,e = 0.5, and Ny, = 20 iterations.
Pr(+D] e (+1)]” + [Pr(=1)]" g (—1))° The optimization is made starting from presetting initial

(8) values for the four main parameters, for instanae= 1,
wherea and 3 parameters provide more or less importancg — 1, 7 = 8 e v = 1. Keeping three parameters fixed and
(weighting factors) to the pheromone amount and the initigdnging the fourth, a first set of curves for the ACO-MuD
information, respectively. Note that is related to the algo- jnput parameter optimization could be obtained. Then, the
rithm convergence speed, whileis related to the reliability four optimized parameters at this first step of optimizatoa
that can be assigned to the MFB output, which must be sgidated. Hence, a second set of curves for the optimized inpu
a low value in hostile conditions of channel and/or systefarameters could be obtained, now in a narrower values range
loading > 0.5). being the optimized values of the first step the middle of the

At each iteration, the choice of a certain bit related to eagRjues range. The values obtained at this second optimirati
ant trail will be taken from the probablllty defined in (8) |fstep are then assumed as Optima for the ACO-MuD a|gorithm
some trail is more successfully th@h.:, the best-candidate gt that channel condition and system operation point. The
solution is updated. After the algorithm performs a spegifieaco-MuD performance is compared with the single-user

number of iterationsVi..., the solution found by the algorithm pound (SuB), i.e., when only one user is active in the system.
is returned by the vectaby, ;.

1IV. ACO-MuD INPUT PARAMETERS OPTIMIZATION A. ACO-MUD Performance — Low Speed Vehicular Channe|S

Essentially, there are four input parameters in the ACO- Fig. 1.a shows the first performance analysis ranging the
MuD algorithm, «, 3, v e o; the values assigned to thes@arameters according the methodology described above. For
parameters can dramatically affect algorithm’s perforcean the parametersy and 3, it could be observed an optimum

The parametern is related to the weight given to thevalue trend, given bya = 0.6, § = 6. For the parameters
information registered in the pheromone table during tiNd7y, one can see that there were not performance degradation
probability calculation. Asa grows, more and more antsthroughout their respective range values. Hence, inteiated
choose to take the better path identified in the table (highélues have been assumed givendby- 5 and~y = 3. Then,
probability value). Thus, the algorithm’s convergencea;bethis set values has been deployed as the basis for the second
is improved, because the ants tend to choose the same WB{jmization step for the parametessand 3. Results in Fig.
quickly. This affects the convergence time and, as a condeb is taken considering a narrower range centered on the
quence, the algorithm’s complexity. respective optimum value obtained from the first optimizati

The parametesf is related to the priori information during St€P-
the probability calculation3 increasing implies in more ants Finally, the optimum input parameter values for the ACO-
following the initial solution trend, i.e., choosing thelsion MuD operating on non-selective fading channels with mobile
given by the MFB outputy, in the MuD context. However, units moving with uniformly distributed speeds in the range
if the initial information is not reliable, i.e., in multies v ~ U [0,60] km/h and system loading afy, = 100% were
scenarios which SNR is low and/or system loading is higpPtained, as shown at the first line of TableV.(x = 60
(L > 0.7), high values of3 could induce the ants to choos m/h).

a mistaken path, increasing the system'’s BER.

On other hand, the parameteysand o are related to the
pheromone accumulation according to the quality of paths
taken by each ant and the best path found soal:, Parameters [ @ B o v
respectively. According the study about the ACO algorithm P zfgo’“l’% 7h 00 :
parameters applied to the traveling salesman problem done i vf:i =240 km/h 0.6
[17], the ACO algorithm performance is not affected by the
values assigned to® ando parameters. Indeed, our simulation ) .
results described in the next subsections, related to these B- ACO-MuD Performance — High and Ultra-High Speed
input parameters optimization applied to the MuD problenYehicular Channels
offer support to the conclusions found in [17]. Under higher mobility, and at same system loading- 1,

Next, it is carried out a complete analysis optimizatioone can see from Fig. 2 the similar results regarding the
on the four input parameters of ACO algorithm, specificallgptimal input parameters values obtained by the two-step

TABLE |
OPTIMIZED VALUES FOR THEACO-MUD INPUT PARAMETERS
CONSIDERING DIFFERENT SYSTEMS MOBILITY CONDITIONS.

INENEN|

5 3
5 3
5 3
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optimization procedure for the low-speed vehicular ch#s)neparametersa. and 5, which are related to the convergence

as described in the section IV-A.
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Fig. 1. Input parameters optimizatioli,ax = 60km/h; SNR= 20 dB

According to the methodology described above, under high —o— suB (BPSK)
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speed and tha priori information reliability, respectively, are
more influential to the algorithm’s performance (conve®n
while the parameters and v proved to be less sensible,
corroborating the analysis carried out in [17] for a general
purpose discrete ACO algorithm.

V. NUMERIC RESULTS FORMUD PROBLEM WITH
OPTIMIZED ACO INPUT PARAMETERS

In order to demonstrate the ACO-MuD algorithm robustness
and efficiency, in this section the performance of the héaris
detector with and without optimized input parameters is -com
pared, regarding the number of iterations (convergencedpe
and signal-to-noise ratio (SNR). Fig. 3 shows the converge
velocity of the ACO-MuD under SNR= 20dB, K = 31
users,M = 30 ants,e = 0.5, Vipax = 120 km/h and with and
without optimized input parameters. One can see that with
optimized input parameters values found in Section IV, the
optimized ACO-MuD with parameters: 0.4, 5 =4, 0 =5
and~y = 3 achieves the BER performance bound (maximum
likelihood optimum detector, i.e., performance very cldse
SuB) after five iterations. Thus, for the optimized ACO-MuD,
Niter = 5 iterations are enough for the complete convergence
under non-selective Rayleigh SISO DS/CDMA channels and
full system loading £, = 100%) condition.

o o T T T

CcD

mobility the optimal values for thex e 5 parameters in the
first optimization step, Fig. 2, were changeddo= 0.6 and

B = 7.5. Similarly to the low mobility case, for and ~
parameters it was assumed= 5 andy = 3. This set was used

in the second optimization stage of the parameters, caomside

a narrower ranges centered in each optimum value found in

BER

—/A— ACOa=04,B=4,0=5ey=3
—/—ACOa=007,=06,0=012ey=5
ACOa=7,p=6,0=12ey=0.05

the first step.

BER

\

max

120

60

2

Y

Fig. 2. ACO-MuD input parameters optimization. SNR20 dB.

o 2 4 & 8 10 12 1 16 18 2
Iterations
Fig. 3. ACO-MuD Convergence performance under SNR = 20 dB, flat
Rayleigh channel. = 100% andVmax = 120 km/h.

In order to confirm the convergence performances related
to ACO-MuD input parameters values, as found in Fig. 3,
Fig. 4 presents the ACO-MuD BER performance for a wide
range of SNR [0; 25]. As one can immediately conclude,
the best ACO-MuD performance (curve with marken\—)
is achievable under optimized input parameters; besicekeru
with the optimized input parameters values, the ACO-MuD is
able to achieve the OMuD performance for all SNR values
ranging[0; 25] dB.

Note that, for this scenario, while the OMuD nee2f8
cost function calculations (cfc), resulting in ov&hillions of
cost function calculations, on the other hand the ACO-MuD
with optimized parameters evaluates a number of cfc given

Analyzing the optimized values on different mobility sit-by the product of the ants populatiod and the algorithm
uations, one can conclude from Fig. 2 that there were ntgrations Ny.,. With the values assumed in the simulations,
significant differences for distinct channel mobility cénd this complexity is of the order of = M - Ny, = 150 [cfc].
tions, from low to ultra-high speed vehicular channels. Thdence, the optimized ACO-MuD is able to find solutions very
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close to those obtained by the OMuD, but with only a fractioto the channel mobility and loading system variation, iatlic
of the cfc, i.e.~ 1.4-107 times lower than the number neededng that the algorithm is able to operate robustly undeedifht

by OMuD.
[

cD
—O— SuB (BPSK)
—A—ACOa=04,B=4,0=5ey=3
ACOa=7,=6,0=12ey=0.05
—/—ACO @ =0.07,B=06,0=012ey=5

N\

10

101

0 é 1‘0 1‘5 2‘0 25

Eb/No [dB]
Fig. 4. BER performance for ACO-MuD under Flat Rayleigh chelan
L = 100% loading, Vinax = 120 km/h, considering different values for the (2]
input parameters.

(1]

. . [3]
Deploying the same values for the input parameters used in

Fig. 3, the excellent achievable ACO-MuD BER performance
in terms of convergence speed is put into perspective in Figi;]
5, considering a wide range of system SNR operation an
full system loadingLy, = 100%. The number of iterations to [5]
achieve total convergence increases with SNR values; @.g. f
SNR=10 dB,Njter = 2, while for SNR=20 dB,Nji., = 5 and
for SNR=30 dB,Niter = 9.

(6]

10"

(7]

10"

BER

(8]

10

. [l
104l
40

5 [10]

SNR (dB)

Iterations

Fig. 5. ACO-MuD Convergence performance under S&; 30] dB, flat
Rayleigh,Lo; = 100%, Vinax = 120 km/h;ae = 0.4; B =7;0 =5, v = 3.

[12]
V1. CONCLUSIONS [13]

A heuristic multiuser detector based on the ant colony
optimization (ACO-MuD) suitable to BPSK DS/CDMA sys-[14
tems under flat Rayleigh fading channels was proposed an
successfully characterized. An input parameters optitioiza
methodology for the ACO-MuD was carried out, in order 95
achieve the best possible performance with a fixed number of]
iterations. The optimized values proved to be robust enpugh
such a way to ensure a near-optimum performance for differeqy
system and channel operations scenarios, as well as differ-
ent power control situations, without the need of significan
changes in the algorithm. [17

Indeed, the input parameters optimization for the ACO-
MuD shows that the parametersand~y are virtually immune

mobile channel coherence times; in practice, only dhand

£ parameters needs to be slightingly adjusted when drastic
changes in both system operation conditions and multiple
access channel occur.

The computational complexity for the proposed ACO-MuD
deploying optimized input parameters, was analyzed by the
number of cost function calculations. ACO-MuD complexity
results very low, resulting in only a small fraction of the
OMuD computational complexity={ 10~7) under full system
loading condition, wide range of channel mobility, but with
very similar performances.
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