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Parameter Optimization in ACO-MuD DS/CDMA
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Abstract— A simple and efficient methodology for tuning
the input parameters applied to the ant colony optimization
multiuser detection (ACO-MUD) in direct sequence code division
multiple access (DS-CDMA) is proposed. The motivation in using
a heuristic approach is due to the nature of the NP complexity
posed by the wireless multiuser detection optimization problem.
The challenge is to obtain suitable data detection performance in
solving the associated hard complexity problem in a polynomial
time. Previous results indicated that the application of heuristic
search algorithms in several wireless optimization problems
have been achieved excellent performance-complexity tradeoffs.
Regarding different system operation and channels scenarios, a
complete input parameters optimization procedure for the ACO-
M UD is provided herein, which represents the major contribution
of this work. The performance of the ACO-MUD is analyzed
via Monte-Carlo simulations. Simulation results show that, after
convergence, the performance reached by the ACO-MUD is much
better than the conventional detector (CD), and somewhat close to
the optimum likelihood detector (OMuD). Flat Rayleigh channels
is initially considered, but the input parameter optimization
methodology is straightforward applicable to selective fading
channels scenarios, as well as to joint time-spatial wireless
channels diversities.

Keywords— Ant colony intelligence; multiuser detection; input
parameters optimization; computational complexity; DS-CDMA.

I. I NTRODUCTION

In the direct sequence/code division multiple access
(DS/CDMA) technology, all the users share the entire fre-
quency band available at the same time. This is possible due
the spreading sequence with short chip period, which is used
in order to spread the user information along all the available
bandwidth spectrum, as well as serves as an identification
code for each user, providing some level of multiple access
interference (MAI) immunity. The application of sequences
with low cross correlation allows to support a considerably
number of users simultaneously, as well as the possibility
of operation in the asynchronous configuration mode, meting
the requirements of wireless mobile communication uplink.
However, as the system loading1 increases, the utilization of
sophisticated detectors become necessary, such as multi user
detection (MuD) [1], in such a way to obtain a reasonable
separation among the several user’ signals, each one under an
intense multiple access interference level generated byK − 1
interfering users. The best performance is achieved by the
optimum multiuser Detector (OMuD) or maximum likelihood
(ML) detector, which complexity grows exponentially with the
number of users,O(2K) [1].

In the last decade, proposals based on heuristic meth-
ods have been reported to solve the MuD problem, getting
performance close to the ML performance with polynomial
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1The number of users by the processing gain ratio,L = K/N .

computational complexity [2], [3]. The use of heuristic search
algorithms is motivated by the fact that optimization prob-
lems related to wireless communication systems results in
non-polynomial (NP-hard) problems, e.g, MuD optimization
problem [4]. So, from a practical point-of-view, the challenge
is to obtain satisfactory results for these high computational
complexity problems in a polynomial time. In the multiuser
detection context, the heuristic based algorithms (Heur-MuD)
most commonly used includes the evolutionary programming
(EP) based algorithms, specially the genetic algorithms (GA)
[2], [5], particle swarm optimization (PSO) [6], [7], ant colony
optimization (ACO) [8] and the local search method (LS)
[9], [10]. Furthermore, the input parameters optimizationof
the heuristic-based algorithms is of paramount importancein
order to obtain reliable results. Specifically on MuD opti-
mization problem, in [11] a detailed study about the input
parameters of the particle swarm heuristic algorithm applied to
DS/CDMA multiuser detection problem has been conducted.
Hence, present work aims to develop an input parameters
analysis for the ant colony optimization (ACO) heuristic-based
algorithm applied to DS/CDMA multiuser detection problem.

The first algorithm using the ACO heuristic approximation
was proposed in1991 by Colorni [12], and since that many
variant algorithms were described in the literature. Recently,
this ant behavior-based technique has been widely applied to
multiple access multiuser detection [8], [13]–[15].

The computational complexity of DS/CDMA ACO mul-
tiuser detection was analyzed in [13], noting that with a few
iterations the ACO-MuD algorithm was able to reach the near-
optimal performance spending only a small fraction (≈ 5%)
of computational effort necessary to perform an exhaustive
search. Furthermore, [8] analyzes the ACO-MuD applied to
multi carrier DS/CDMA systems (MC-DS/CDMA). ACO-
MuD in this context is able to reach the optimal perfor-
mance, regardless the adopted number of carriers. An heuristic
ACO-based multiuser detector for space-time block coding
(STBC) systems with receiver diversity was proposed in [16].
Numerical results have indicated a very close performance
to the optimal one; also, the STBC ACO-MuD does not
present the bit error rate saturation (BER-floor), a degradation
performance effect that occurring at high SNR region.

II. SYSTEM MODEL

In a DS/CDMA system deploying BPSK modulation under
non-line-of-sight (NLOS) fading channels the time continuous
baseband signal at the receiver side can be described as:

r (t) =

K∑

k=1

Akbksk (t− τk)hk (t) + χ (t) (1)

whereK is the number of active users in the system;t ∈ [0, Tb]
andTb is the bit period;Ak is the transmitted signal amplitude
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of the kth user, given byAk =
√

Ek

Tb

, whereEk is the bit
energy andPk the power of the signal received by thekth
user;sk is the spreading sequence assigned to thek−th user;
bk ∈ {±1} is the k−th user’s transmitted bit information,
assumed independent and equiprobable distributed;hk (t) is
the complex channel coefficients for thekth user, andχ (t) is
the time continuous additive white Gaussian noise (AWGN),
representing the thermal noise and other uncorrelated noise
sources, with bilateral power densityN0/2.

Multiplying the received signal by the spreading sequence of
the interest user (matched filter to this sequence), the conven-
tional detector (CD) provides the information de-spreading. In
this way and using matrix notation, the output of the matched
filter bank (MFB) isy = RCAb+χχχ, wherey is theK × 1
output vector,R is the K × K correlation matrix,C =
diag(c1, c2, ..., ck) the K × K channel coefficients diagonal
matrix,A is the diagonal matrix of received amplitudes, andb

is theK×1 vector containing one information bit for each user.
χχχ is the sampled AWGNK × 1 vector with bilateral power
spectral densityN0/2. At the MFB output follows the hard
decisor which takes decision according to the signal polarity:
bcd = sgn(y), where the modified signum functionsgn(.),
which returns the polarity of its input.

The conventional detector for DS/CDMA uplink receiver
(MFB) considers the MAI as a additional background noise,
being not able to separate multiple access interference (MAI)
from the interest signal. On the other hand, the multiuser
detectors (MuD) takes advantage of MAI as a way to takes its
performance closer to the optimal. In [1], it was shown that the
optimal multiuser detector (OMuD), or maximum likelihood
(ML) detector, calculates the cost function of all the possible
candidate-solutions, and return as the optimal solution the
argument of the higher value found. The cost function can
be expressed as:

f (ϑϑϑ) = ℜ{2yTCHAϑϑϑ− ϑϑϑTCARACHϑϑϑ} (2)

whereℜ(.) is the real operator andϑϑϑ theK × 1 information
bits candidate vector. Consequently, the estimated transmitted
bit vector for theK users is defined as:

b̂opt = arg max
ϑϑϑ∈{±1}K

f (ϑϑϑ) (3)

Since the optimal detector (ML) calculates the cost function
for all the possible solutions, it is immediate that its perfor-
mance grows exponentially with the users numberK, because
the number of possible combinations is given by2K .

III. H EURISTIC ACO-MUD

The ant colony optimization is based on the foraging
behavior of the ant colony in nature. In search of food, the
ants of a colony are scattered randomly in their neighborhood.
When an ant is successful in it search for food, it come back
nest and leaves pheromones in the way. This pheromone will
induce the other ants to take this same way in the search for
food, further strengthening the pheromone trail. If the food at
the end of a certain way runs out and the ants stops taking it,
this pheromone will be evaporated.

For BPSK signaling, uplink receiver side and just one
antenna at the base-station (BS) receiver and each ofK users’

transmitter, i.e., from the interest user receiver viewpoint at
BS, we have a single-input-single output (SISO) communica-
tion system, withK − 1 interfering users. So, the multiuser
detection problem at the BS receiver side is constituted by2K

possible candidate solutions in (3). This solutions are seen by
the algorithm as all the possibles vector-candidates (or trails)
that the ants can travel. The quality of each trail is evaluated
by the cost function, defined in eq. (2). The algorithm steps
aiming to find a solution that maximizes (2), or analogously,
find the fastest trail for the ants until the food.

The MFB outputs serve as initial information to the ants.
So, the log-likelihood function (LLF) for thekth user is
LLLk(±1) = 2ℜ{±AAA(k)y(k)}−AAA(k)2R(k, k), whereAAA(k) =
A(k, k)C(k, k) is the kth signal received amplitude, includ-
ing the channel effects (fading, path loss and shadowing).
The desirability function is defined using the LLF function:
DDDk(±1) = 1 + e−LLLk(±1). From the desirability function, the
intrinsic affinity function is defined, which influences the trail
decision of each ant along the algorithm iterations:

ηηηk(±1) = [DDDk(+1) +DDDk(−1)] /DDDk(±1) (4)

The signals at the matched filter bank output are assumed
as initial information. It is then necessary to take into consid-
eration that the decision taken by the ants be influenced by the
paths taken previously, which resulted in better results. This
way, the solution found by the algorithm will evolve along the
iterations. So, in order to quantify this evolution, the2 × K
pheromone tablePPP is created, in which the first row refers to
the probability of positive bits, and the second row refers to
the probability of the negative bits. Its elements are initialized
with probability λ. Along the iterations, this table is being
filled according to the quality of the paths taken by each ant
and a tendency, measured in terms of increasing probability
of that specific bit be 1 (positive bit) or 0 (negative bit).

The first step of the table updating takes into account the
paths chosen by each ant in that iteration, and how successful
these chooses were (measured by the cost function evaluation).
A pheromone amount which is equivalent to the cost function
value regarding the path taken by the ant is multiplied by the
γ coefficient, and incrementally accumulated at the respective
positions in thePPP matrix:

PPPi+1 = PPPi + γ · f(trail(m)) · TTT (trail(m)) (5)

where trail(m) is the path taken by themth ant in a given
iteration andTTT (trail(m)) is a 2 × K filled with 1 in the
positions related to the path taken by the ant and0 in the
others.

The second step of the table updating takes into account
the best path found by the ACO-MuD algorithm until that
moment, named hereinϑϑϑbest. Similar to the adopted procedure
in the first update stage, now, a pheromone amount which is
equivalent to the cost function ofϑϑϑbest is multiplied by a
coefficientσ and deposited at the respective positions ofPPP:

PPPi+1 = PPPi + σ · f(ϑϑϑbest) · TTT (ϑϑϑbest) (6)

Aiming to scape from possibles local optima (maxima), at
each new iterationi, the pheromone table is multiplied by a
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coefficient(1− ε), beingε the pheromone evaporation rate:

PPPi+1 = (1− ε) · PPPi (7)

Hence, an excessive amount of pheromone is avoided to be
accumulated over any possible trail.

Once factors, which influence the path choice of the ants
along the iterations, have been defined, it is possible to define
the bit choice probability:

Pk(±1) =
[PPPk(±1)]

α
[ηηηk(±1)]

β

[PPPk(+1)]
α
[ηηηk(+1)]

β
+ [PPPk(−1)]

α
[ηηηk(−1)]

β

(8)
whereα and β parameters provide more or less importance
(weighting factors) to the pheromone amount and the initial
information, respectively. Note thatα is related to the algo-
rithm convergence speed, whileβ is related to the reliability
that can be assigned to the MFB output, which must be set
a low value in hostile conditions of channel and/or system
loading (L > 0.5).

At each iteration, the choice of a certain bit related to each
ant trail will be taken from the probability defined in (8). If
some trail is more successfully thanϑϑϑbest, the best-candidate
solution is updated. After the algorithm performs a specified
number of iterationsNiter, the solution found by the algorithm
is returned by the vectorϑϑϑbest.

IV. ACO-M UD INPUT PARAMETERS OPTIMIZATION

Essentially, there are four input parameters in the ACO-
MuD algorithm, α, β, γ e σ; the values assigned to these
parameters can dramatically affect algorithm’s performance.

The parameterα is related to the weight given to the
information registered in the pheromone table during the
probability calculation. Asα grows, more and more ants
choose to take the better path identified in the table (higher
probability value). Thus, the algorithm’s convergence speed
is improved, because the ants tend to choose the same way
quickly. This affects the convergence time and, as a conse-
quence, the algorithm’s complexity.

The parameterβ is related to thea priori information during
the probability calculation.β increasing implies in more ants
following the initial solution trend, i.e., choosing the solution
given by the MFB outputsy, in the MuD context. However,
if the initial information is not reliable, i.e., in multiuser
scenarios which SNR is low and/or system loading is high
(L ≥ 0.7), high values ofβ could induce the ants to choose
a mistaken path, increasing the system’s BER.

On other hand, the parametersγ and σ are related to the
pheromone accumulation according to the quality of paths
taken by each ant and the best path found so farϑϑϑbest,
respectively. According the study about the ACO algorithm
parameters applied to the traveling salesman problem done in
[17], the ACO algorithm performance is not affected by the
values assigned toγ andσ parameters. Indeed, our simulation
results described in the next subsections, related to thesetwo
input parameters optimization applied to the MuD problem,
offer support to the conclusions found in [17].

Next, it is carried out a complete analysis optimization
on the four input parameters of ACO algorithm, specifically

applied to the MuD problem considering the reverse link of
DS/CDMA systems under flat frequency fading channels and
different mobility conditions for the mobile terminals. Monte-
Carlo simulation method is deployed in order to determine the
optimum values of the ACO-MuD input parameters. A20dB
SNR, Gold spreading sequences with length (processing gain)
31 and system loadingL% = 100 · K

N
= 100% have been

adopted. For the others ACO-MuD parameters, the following
values have been assumed: initial pheromone probability,λ =
0.01; population =30 ants,ε = 0.5, andNiter = 20 iterations.

The optimization is made starting from presetting initial
values for the four main parameters, for instance,α = 1,
β = 1, σ = 8 e γ = 1. Keeping three parameters fixed and
ranging the fourth, a first set of curves for the ACO-MuD
input parameter optimization could be obtained. Then, the
four optimized parameters at this first step of optimizationare
updated. Hence, a second set of curves for the optimized input
parameters could be obtained, now in a narrower values range,
being the optimized values of the first step the middle of the
values range. The values obtained at this second optimization
step are then assumed as optima for the ACO-MuD algorithm
at that channel condition and system operation point. The
ACO-MuD performance is compared with the single-user
bound (SuB), i.e., when only one user is active in the system.

A. ACO-MuD Performance – Low Speed Vehicular Channels

Fig. 1.a shows the first performance analysis ranging the
parameters according the methodology described above. For
the parametersα and β, it could be observed an optimum
value trend, given by:α = 0.6, β = 6. For the parametersσ
andγ, one can see that there were not performance degradation
throughout their respective range values. Hence, intermediate
values have been assumed given byσ = 5 andγ = 3. Then,
this set values has been deployed as the basis for the second
optimization step for the parametersα andβ. Results in Fig.
1.b is taken considering a narrower range centered on the
respective optimum value obtained from the first optimization
step.

Finally, the optimum input parameter values for the ACO-
MuD operating on non-selective fading channels with mobile
units moving with uniformly distributed speeds in the range
v ∼ U [0, 60] km/h and system loading ofL% = 100% were
obtained, as shown at the first line of Table I (Vmax = 60
km/h).

TABLE I

OPTIMIZED VALUES FOR THEACO-MUD INPUT PARAMETERS

CONSIDERING DIFFERENT SYSTEM’ S MOBILITY CONDITIONS.

Parameters α β σ γ

Vmax = 60 km/h 0.6 7 5 3
Vmax = 120 km/h 0.4 7 5 3
Vmax = 240 km/h 0.6 4 5 3

B. ACO-MuD Performance – High and Ultra-High Speed
Vehicular Channels

Under higher mobility, and at same system loadingL = 1,
one can see from Fig. 2 the similar results regarding the
optimal input parameters values obtained by the two-step
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optimization procedure for the low-speed vehicular channels,
as described in the section IV-A.
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Fig. 1. Input parameters optimization:Vmax = 60km/h; SNR= 20 dB

According to the methodology described above, under high
mobility the optimal values for theα e β parameters in the
first optimization step, Fig. 2, were changed toα = 0.6 and
β = 7.5. Similarly to the low mobility case, forσ and γ
parameters it was assumedσ = 5 andγ = 3. This set was used
in the second optimization stage of the parameters, considering
a narrower ranges centered in each optimum value found in
the first step.
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Fig. 2. ACO-MuD input parameters optimization. SNR= 20 dB.

Analyzing the optimized values on different mobility sit-
uations, one can conclude from Fig. 2 that there were not
significant differences for distinct channel mobility condi-
tions, from low to ultra-high speed vehicular channels. The

parametersα and β, which are related to the convergence
speed and thea priori information reliability, respectively, are
more influential to the algorithm’s performance (convergence),
while the parametersσ and γ proved to be less sensible,
corroborating the analysis carried out in [17] for a general
purpose discrete ACO algorithm.

V. NUMERIC RESULTS FORMUD PROBLEM WITH

OPTIMIZED ACO INPUT PARAMETERS

In order to demonstrate the ACO-MuD algorithm robustness
and efficiency, in this section the performance of the heuristic
detector with and without optimized input parameters is com-
pared, regarding the number of iterations (convergence speed)
and signal-to-noise ratio (SNR). Fig. 3 shows the converge
velocity of the ACO-MuD under SNR= 20dB, K = 31
users,M = 30 ants,ε = 0.5, Vmax = 120 km/h and with and
without optimized input parameters. One can see that with
optimized input parameters values found in Section IV, the
optimized ACO-MuD with parameters= 0.4, β = 4, σ = 5
and γ = 3 achieves the BER performance bound (maximum
likelihood optimum detector, i.e., performance very closeto
SuB) after five iterations. Thus, for the optimized ACO-MuD,
Niter = 5 iterations are enough for the complete convergence
under non-selective Rayleigh SISO DS/CDMA channels and
full system loading (L = 100%) condition.
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Fig. 3. ACO-MuD Convergence performance under SNR = 20 dB, flat
Rayleigh channel,L = 100% andVmax = 120 km/h.

In order to confirm the convergence performances related
to ACO-MuD input parameters values, as found in Fig. 3,
Fig. 4 presents the ACO-MuD BER performance for a wide
range of SNR∈ [0; 25]. As one can immediately conclude,
the best ACO-MuD performance (curve with marker−∆−)
is achievable under optimized input parameters; besides, under
with the optimized input parameters values, the ACO-MuD is
able to achieve the OMuD performance for all SNR values
ranging[0; 25] dB.

Note that, for this scenario, while the OMuD needs231

cost function calculations (cfc), resulting in over2 billions of
cost function calculations, on the other hand the ACO-MuD
with optimized parameters evaluates a number of cfc given
by the product of the ants populationM and the algorithm
iterationsNiter. With the values assumed in the simulations,
this complexity is of the order ofC = M ·Niter = 150 [cfc].
Hence, the optimized ACO-MuD is able to find solutions very
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close to those obtained by the OMuD, but with only a fraction
of the cfc, i.e.≈ 1.4 ·107 times lower than the number needed
by OMuD.
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Fig. 4. BER performance for ACO-MuD under Flat Rayleigh channels,
L = 100% loading,Vmax = 120 km/h, considering different values for the
input parameters.

Deploying the same values for the input parameters used in
Fig. 3, the excellent achievable ACO-MuD BER performance
in terms of convergence speed is put into perspective in Fig.
5, considering a wide range of system SNR operation and
full system loadingL% = 100%. The number of iterations to
achieve total convergence increases with SNR values; e.g. for
SNR=10 dB,Niter = 2, while for SNR=20 dB,Niter = 5 and
for SNR=30 dB,Niter = 9.
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Fig. 5. ACO-MuD Convergence performance under SNR∈ [5; 30] dB, flat
Rayleigh,L% = 100%, Vmax = 120 km/h;α = 0.4; β = 7; σ = 5; γ = 3.

VI. CONCLUSIONS

A heuristic multiuser detector based on the ant colony
optimization (ACO-MuD) suitable to BPSK DS/CDMA sys-
tems under flat Rayleigh fading channels was proposed and
successfully characterized. An input parameters optimization
methodology for the ACO-MuD was carried out, in order to
achieve the best possible performance with a fixed number of
iterations. The optimized values proved to be robust enough,
such a way to ensure a near-optimum performance for different
system and channel operations scenarios, as well as differ-
ent power control situations, without the need of significant
changes in the algorithm.

Indeed, the input parameters optimization for the ACO-
MuD shows that the parametersσ andγ are virtually immune

to the channel mobility and loading system variation, indicat-
ing that the algorithm is able to operate robustly under different
mobile channel coherence times; in practice, only theα and
β parameters needs to be slightingly adjusted when drastic
changes in both system operation conditions and multiple
access channel occur.

The computational complexity for the proposed ACO-MuD
deploying optimized input parameters, was analyzed by the
number of cost function calculations. ACO-MuD complexity
results very low, resulting in only a small fraction of the
OMuD computational complexity (≈ 10−7) under full system
loading condition, wide range of channel mobility, but with
very similar performances.
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