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Abstract— This work presents a comparative analysis of cor-
relation and correntropy in the context of graph-based brain-
computer interfaces using motor imagery. These two statistical
entities are used in the construction of the graphs, from which
features are extracted. The results indicate that correntropy
has a more consistent performance over the different graph
measures, hence deserving to be considered as a relevant option
by researchers of the field.
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I. INTRODUCTION

Brain-computer interfaces (BClIs) aim to control an external
device by directly employing the user brain signals [1]. For
a BCI to appropriately function, an accurate classification
scheme that is capable of identifying a useful brain response
and associating it with specific commands is mandatory. In
the case of recorded signals from an electroencephalography
(EEG) device, an important strategy to evoke such responses is
left / right hand motor imagery (MI). This stimulation results
in event-related desynchronizations (ERDs) amongst motor
neurons, generating a decrease in the power spectral density
(PSD) of the mu frequency band (7 - 13 Hz) on the contra-
lateral hemisphere to which the hand MI is performed [2].
Therefore, extracting features from the signal spectral domain
and using them to distinguish between MI tasks has become
a common approach [3], [4].

Although this method is relatively well-established in
the MI-BCI community, no optimum manner of proceeding
through the stages of a BCI has yet been found. In fact,
there are still some limitations, such as the great inter-subject
variability and inconsistencies regarding the responsive MI fre-
quency bands and response scalp locations for each subject [5].
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The use of graph theory in neuroscience has led to new
insights regarding the functional relationship between distinct
brain areas. It has been highlighted that a further understanding
of the functional connectivity during MI tasks might improve
the existing BCI technology [5].

In this work, we compare the performance of graph mea-
sures to classify signals from right and left hands MI, extracted
from graphs built according to two different approaches:
correntropy - an entity from the field of information-theoretic
learning [7] - and correlation. We chose to work with three
graph measures based on centrality (degree centrality, be-
tweenness centrality and eigenvector centrality), as they pro-
vide complementary information regarding a node’s impor-
tance within the network. Linear discriminant analysis was
adopted in the classification stage.

This work is organized as follows. In section II, we describe
the materials and methods used, including a brief exposition
of correntropy; in section III, we present the obtained results,
while section IV brings our conclusions and final remarks.

II. MATERIALS AND METHODS
A. Data acquisition

Data from six healthy subjects were acquired using a 64-
Ag/AgCl electrode array positioned according to the 10-10
positioning system in the BrainCap. A set of two BrainAmp
amplifiers (BrainProducts, Germany) were used. All subjects
signed an informed consent term, previously approved by the
Ethics Committee of UNICAMP (n. 791/2010).

For the EEG recordings, volunteers were sitting comfortably
in a chair in front of a computer screen, where a chronometer
was displayed, so they could keep track of the time associated
with each block. The acquisition protocol consisted of blocks
of 10 seconds each, alternating between periods of task (left
or right hand movement imagination) and rest (Figure 1). This
procedure was carried out for 170 s, constituting one run.
Two runs were performed for each subject. To ensure that all
subjects properly understood the protocol, two other runs took
place before these, but with actual hands movement instead of
ML

For both movement and MI acquisitions, volunteers were
instructed to perform the same type of motor action, which
consisted on the opening and closing of their hands (left or
right, depending on the task block being executed). Moreover,
we asked subjects to attempt to perform this movement at a 1
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Hz frequency (which should account for 10 motor actions by
the end of the task block)

Right hand
Rest MI
(10s) (10s)

Left hand
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Rest
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( S} etc

Fig. 1: Experimental protocol scheme.

B. Data pre-processing

The collected data were downsampled to 256 Hz, since the
original 5 kHz sampling rate proved to be unnecessarily high
for our study. Next, data were filtered in the mu frequency
band (7 - 13 Hz). Both of these operations were performed in
EEGLab, a MATLAB suite.

For artifact removal, we designed a common average re-
moval (CAR) filter. The basic idea is to calculate the mean
signal across all electrodes and to subtract this value from
each individual channel signal [6].

C. Graphs and adjacency matrices calculation

Consider an undirected, connected, weighted graph G =
{V,E,W}, where V is a finite set of vertices with |[V| = N,
E is a set of edges, and W is the adjacency matrix. A signal
f :V — RN can be defined on the vertices of the graph
represented as a vector f € RY, where the n'" component,
fn. tepresents the signal value at the n'" vertex of V.

There are several possible forms to define a similarity
function s(f;, f;) between all pairs of data points f; and f;
to model the local neighborhood relationships between the
vertices. The similarity graphs establish that two vertices are
connected if the similarity s(f;, f;) between the corresponding
data points is positive or larger than a certain threshold 7". The
corresponding edge is therefore weighted by w; ; = s(fi, f;),
and the weighted adjacency matrix of G is simply defined as
W = (wij)ij={1,.. m}- If wi; = 0, the vertices v; and v;
are not connected since either s(f;, f;) = 0 or s(f;, f;) <T.
If G is an undirected graph, then w;; = w;; and W is a
symmetric matrix with a complete set of real eigenvalues and
an orthogonal eigenvector basis.

In our study, we modeled interactions amongst electrodes by
a graph, with each node being associated to a single electrode.
The edges represent interactions between these nodes, which
were estimated by two methods - Pearson correlation and cor-
rentropy -, and the corresponding classification performances
of the measures obtained from these graphs were compared.
The purpose of this comparison is basically to verify whether
the higher-order information brought by correntropy can play
an effective role in improving the rate of correct classification.
Notice that each element of the graph adjacency matrix corre-
sponds to a measure of similarity amongst the time series of
the associated electrode pair. Let us now introduce the measure
of correntropy.

D. Correntropy

Correntropy is an emblematic entity in the context of
information-theoretic learning, and can be interpreted as a
generalized correlation function that is capable of measuring
the similarity between random variables / stationary random
processes [7], [8]. The concept of correntropy may be extended
to cross-correntropy when it expresses a degree of similarity
between two arbitrary scalar random variables X and Y. The
cross-correntropy is defined as

VEY) = Bxy WY = [ [ nle ) ps (e g)dody
(D

where £(-, -) denotes a positive-definite kernel function. Equa-
tion (1) can be reduced to the standard cross-correlation if
k(x,y) is replaced by xy. The most widely used definite kernel
function is the translation-invariant Gaussian kernel, defined as

—(X—Y)2>7

202

2

K(X,Y) = ! exp <

V2ro
where o, known as kernel size, acts as an adjustable and
sensitive parameter that is responsible for controlling the “ob-
servation window” in which similarity is obtained. In practical
applications, the statistical mean required for computing the
correntropy is replaced by a sample mean over a finite number
of data, resulting in the following estimator:

1 N
VU,N(X7Y) = NZGU(xi_yi)7 (3)
i=1

where G, (alpha) = \/2170 exp ;lff

By representing the Gaussian kernel according to the Taylor
series expansion, the correntropy function can be rewritten as:

1 oo

\/ﬂg Z ng_oir):;!E [(X - Y)2n] ’ “4)

=0

Vo (X,)Y) =

which reveals that all even-order moments of the random
variable (X —Y") are being implicitly explored in correntropy.
It is possible to verify that the information provided by the
conventional cross-correlation is part of the new function,
more specifically in the term corresponding to n = 1, which
is proportional to:

Ex [X?] + Ey [Y?] = 2Rxy(X,Y). (5)

This result shows that the generalized cross-correntropy
keeps the conventional cross-correlation embedded, but, at the
same time, carries information about higher-order moments of
the random variables. This extra information may express a
better notion of similarity between two random variables in
many different applications.

In the context of our application, considering X € RY,
from Eq. (3), the correntropy can be expressed in terms of the
following matrix V', which will be the graph adjacency matrix
for the next steps of processing. This will be compared to a
conventional correlation matrix.
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Elk(z1z1)] Elk(z122)] ... Ek(z12N8)]
V=
Elk(zne1)] Elk(znzs)] ... E[k(zyan)]

(6)

E. Graph centrality measures

Graph centrality measures are metrics that define the im-
portance of a node under certain criteria. There are a variety
of centrality measures that can be defined. In this study, we
focused our analysis on three types of measures, which give
complementary information: degree centrality (DC), between-
ness centrality (BC) and eigenvector centrality (EC).

The DC for a node ‘¢’ is defined as the sum of all the
weights related to that node and all other nodes ‘5’ (w;;), that
is:

DC(i) = wi;. ()
J

The BC is a measure that considers, for a node ‘7’, all the
possible shortest paths between any other two node pairs (1)
that pass through node ‘¢’ (I5(4)). In other words, it is a
measure of how much that node serves as a “bridge” between
any other two nodes (under a shortest path consideration).

2 Lik(7)
N(N -1) Pt Lk
where N is the total number of nodes in the graph.

The EC of node ‘7’ is calculated by the i-th position of
the eigenvector associated with the largest eigenvalue of the
adjacency matrix.

It is important to note that a large node centrality value
for one measure does not guarantee that the same node will
display, also, a large value for another centrality measure. As
an example, please refer to Fig. 2.

BO(i) =

®)

Fig. 2: Centrality values illustration. Node A has low DC,
but possesses a fundamental role regarding communication
between the red and blue nodes (high BC).

FE. Classification

From the analysis of graph centrality measures, vectors of
64 features were obtained, each feature related to an electrode.
From these vectors, smaller, 32-feature vectors were created,

consisting of the difference of the graph measures between
equivalent electrodes from the left and right hemispheres.
Next, a selection algorithm was used to find the best com-
bination of features.

The approach used for feature selection was that of wrappers
[9]. The employed wrapper was based on forward selection.
The algorithm is based on a “bottom—up” approach, which
means that it starts with an empty feature set. In each step,
one feature is added until 32 features are reached.

Classification was based on a Linear Discriminant Analysis
(LDA) classifier [9]. The total data set of one session was
divided into two sets of 70% for training and 30% for test.
This division was done ten times, i.e., the elements that were
part of the two sets were different in each case. This procedure
is similar to k-fold crossvalidation, with the difference that our
second set is for test and not for validation.

III. RESULTS AND DISCUSSION

Figure 3 displays a bar graph of the classification error
according to the o value of the kernel function in Equation
(2). Each centrality measure is shown in a different color: EC
in blue, DC in green and BC in red. It can be seen that for
BC, there is a o value above which no result is shown. This
is due to the fact that, for these values, BC calculation did not
converge, probably due to sparse adjacency matrices. Still, for
every o value that BC existed, it had the worst classification
performance.

The lowest classification errors were obtained either for EC
or DC, depending on the o value. EC performed best with a
o of 5.00, whereas DC yielded the lowest classification error
for a o of 1.70.

Considering an average performance of both EC and DC,
there seems to exist a general decrease in classification error
up to a o of 1.70. An increase can be observed above this
point, mainly represented by the worse performance of DC.
The o value is associated with the spread of the Gaussian
function. Therefore, the results of Figure 3 suggest that the
best classification scenario is not, necessarily, the one where
this spread has the lowest or the highest value. In fact, for our
case, an optimum ¢ may be chosen as 1.70.

Figure 4 shows the classification error when the Pearson
correlation is used for the adjacency matrices calculation,
instead of the correntropy. In contrast with Figure 3, BC
yielded the lowest classification error in this case. For EC
and DC, classification accuracy was considerably lower in this
case.

The contrast between results from Figures 3 and 4 indicates
that the two distinct approaches for constructing the graphs
can result in different networks, thus considerably changing
the centrality measures, at least regarding the classification
problem.

This is also confirmed by focusing on the results of clas-
sification error for each subject in Table I. Good results are
obtained when using the combinations of correntropy + EC
and correntropy + DC. The correlation has a comparable result
for some subjects with correlation + BC. The values of the
classification error for the correntropy in Table 1 were the best
values obtained among all different o values for each subject.
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C|ass|f|cat|on error (°/°) us|ng the correntropy measure TABLE I: Mean classification error for each subject for all the

30

| I Ec [ pc I EC|

Classification error (%)

0.05 0.20 0.50

1.00 1.70 2.50 5.00 7.00 10.00
o value

Fig. 3: Mean classification error for all subjects using the
correntropy measure. Distinct o values were tested, and are
shown in the horizontal axis. The three centrality measures
are displayed as different colors: EC (blue), DC (green) and
BC (red). Error bars constitute the standard error across all
subjects for a given condition.

C!gssification error using the Pearson correlation method

Classification error (%)

10

EC DC BC

Fig. 4: Mean classification between all subjects using the
Pearson correlation method. All three centrality measures are
shown: EC (blue), DC (green) and BC (red). Error bars
represent the standard error across all subjects for a given
centrality measure.

A statistical test was also performed to make a comparison
of the results obtained for the six cases that were tested. Al-
though there was a not high number of subjects to make these
comparison, after statistical analysis was assumed gausinity
of the data. The comparison was made using the ANOVA test
for multiple comparisons of pairs of columns from the results
of Table I. Table II presents the results where the difference
was significant, these values shows this difference. The value
of significance used for this test was p < 0.05. In the first

cases tested. S indicates the different subjects tested.

S EC EC BC BC DC DC
+Corren  +Correl +Corren +Correl +Corren +Correl

1 0,135 0,283 0,167 0,190 0,076 0,391
2 0,120 0,349 0,208 0,186 0,094 0,422
3 0,054 0,415 0,207 0,093 0,092 0,418
4 0,077 0,363 0,205 0,221 0,161 0,381
5 0,107 0,377 0,174 0,193 0,094 0,419
6 0,103 0,410 0,094 0,081 0,183 0,263

column below of each presented technique its average value
is presented also. The results of this test show that, above
all, the techniques that used correntropia were the ones that
presented the most significant difference in almost all the cases
compared.

TABLE II: Significant mean difference for the multiple com-
parison ANOVA test between the six methods used.

EC+
Corren

BC+
Corren

DC+
Corren

EC+
Correl

BC+
Correl

DC+
Correl

EC+
Corren
m=0,072
BC+
Corren
m=0,176
DC+
Corren
m=0,097
EC+
Correl
m=0,366
BC+
Correl
m=0,166
DC
+Correl
m=0,382

-0,103 -0,293  -0,087  -0,301

-0,190 -0,206
-0,269 -0,285
0,205

-0,222

A visual comparison of the results was done using Principal
Component Analysis (PCA), extracting the three most signifi-
cant components of the data that were used for classification.
Figure 5 shows these attributes in a three-dimensional space
for Subject 3, that had one of the the best separation results.
The beneficial effect of the higher-order information brought
by correntropy is quite clear.

IV. CONCLUSIONS

This work focused on the use of graph analysis applied
to EEG signals in the context of BCI, directed towards the
construction of activity maps that allow to relate the temporal
behavior of different electrode series to distinct two types of
MI task (left / right motor imagery). In the literature, responses
have already been seen using techniques such as correlation to
carry out this task, but in this work we included the correntropy
measure. This allowed us to find similarities between channels
using, in theory, more information than when the simple
correlation is used.

The results showed that similar classification performances
are obtained using correntropy combined to different graph
metrics to generate the classification attributes. The only case
in which the correlation achieved a comparable performance,
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Three principal components of atributes of correlation+EC for subject 3 (sigma=1.7)
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Fig. 5: Using PCA for showing the attributes of the two
classes for subject 3.

with a relatively low classification error, was when BC was
used; therefore, we believe correntropy must be considered by
the community as a most relevant tool in this problem.

Additionally, we also analyzed the influence of the kernel
size ¢ in the performance. The obtained results indicate that
this parameter should be adapted according to the subject
under observation, since the temporal brain response of each
subject can vary considerably.

This initial study can be the basis for a deeper analysis of the
use of information-theoretic learning in the context of brain-
computer interfaces, at least when a graph-based approach is
used for feature generation. Possible future steps could involve
investigating how to process the signals in the spectral domain,
using the definition of the correntropy spectral density (CSD),
which can be evaluated from the autocorrentropy function of
a random process (stationary). A cross spectral density could
also be defined by selecting two random stationary processes.
This would imply that in addition to the temporal information
considered so far to link different channels (electrodes), also
a frequency related information could be used. Adding this
information related to the frequency domain could also be
valuable for analyzing MI-BCI, presenting an interesting point
to be evaluated in upcoming works.

1058

ACKNOWLEDGEMENTS

The authors thank CAPES, CNPq, FINEP and FAPESP
(grant 2013/07559-3) for the financial support.

REFERENCES

J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller and T.
M. Vaughan, Brain-computer interfaces for communication and control.
Clinical neurophysiology, 113(6): 767-791, 2002.

G. Pfurtscheller and C. Neuper,  Motor Imagery and Direct
Brain—Computer Communication. Proceedings of the IEEE, 89(7), 2001.
Sivakami A., Devi S. S. ANALYSIS OF EEG FOR MOTOR IMAGERY
BASED CLASSIFICATION OF HAND ACTIVITIES. International Jour-
nal of Biomedical Engineering and Science, 2(3), 2015.

Cheng M., Jia W., Gao X., Gao S., Yang E. Mu rhythm-based cursor
control: an offline analysis. Clinical Neurophysiology, 115: 745 - 751,
2004.

Hamedi M., Salleh SnH., Noor AM. Electroencephalographic Motor
Imagery Brain Connectivity Analysis for BCI: A Review. Neural Com-
put., 28(6): 999 - 1041, 2016.

McFarland D.J., McCane L.M., David S.V., Wolpaw J.R. Spatial filter
selection for EEG-based communication. Electroencephalography and
Clinical Neurophysiology, 103(3): 386-94, 1997.

Santamaria I., Pokharel P.P., and Principe J.C. Generalized correlation
function: definition, properties, and application to blind equalization.
IEEE Transactions on Signal Processing, 54(6): 2187-2197, 2006.
Principe J.C. Information Theoretic Learning: Renyi’s Entropy and Ker-
nel Perspectives. Edition 1. Springer Publishing Company, Incorporated,
2010.

Theodoridis S., Koutroumbas K. Pattern Recognition, fourth Edition.
Academic Press, 2008.



