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Propagation Characterization for an Indoor Wireless Sensor
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Abstract— This paper carries out an experiment-based channel
characterization for a wireless sensor network based on the
development kit TI eZ430-RF2500-SEH, which operates with
solar energy harvesting. The channel model was obtained from
measurements of the received signal strength (RSS) in an indoor
environment. This model is tested through a coverage sensor
application, and the energy management of the device is also
investigated.
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I. I NTRODUCTION

In the Internet of Things(IoT), a myriad of devices, pro-
vided of sensors, will interact in an autonomous and smart
manner. Thus, wireless sensor networks (WSNs) will be an
essential part of the IoT, as this kind of networks can be widely
used to monitor and collect data from the environment, thereby
enabling different services and applications. WSNs have been
investigated in the most diverse scenarios [1], [2]. For instance,
in [1], a two slope, log-normal path loss near ground outdoor
model is characterized for a WSN at 868 MHz. In [2], the
authors proposed a statistical channel model for a suburban
environment, where the multipath and shadowing phenomena
are predominant. However, the energy resources in WSNs
represent a challenging issue due to the current dependencyon
batteries. Therefore, energy harvesting techniques have proved
to be a promising solution for WSNs [3]. In this paper, an
experiment-based path loss model for a WSN based on the
TI eZ430-RF2500-SEH kit, which operates with solar energy
harvesting, is obtained through measurements of RSS in an
indoor environment. This model is tested through a coverage
sensor application. In addition, the energy management of the
WSN is investigated.

The rest of this paper is organized as follows: section II
presents the theory used; section III presents the procedure to
measurements and the model obtained; section IV presents the
effectiveness of the model in a coverage sensor application;
section V presents the module’s power consumption; finally
section VI presents the conclusions of this work.

II. CHANNEL MODELING

In this paper, we consider two large-scale models, which
are described next.
A. Log-Distance Path loss Model

This model considers that the average received signal power
shows a logarithmic decrease with the distance between trans-
mitter and receiver, which is expressed as

PL[dB] = PL(d0) + 10n log

(

d

d0

)

, (1)
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where,PL(d0) is the path loss at the reference distanced0,
n is the path loss exponent, andd is the distance between
transmitter and receiver. Therefore, the received power can be
obtained asPr [dBm] = Pt[dBm]− PL[dB], wherePt[dBm] is the
transmit power.

Then, for a given scenario, the path loss exponentn can
be empirically determined from channel measurements by
minimizing the square mean error between the predicted and
measured path loss. Hence, the error can be determined as

E(n) =
k

∑

i=1

[

PLmi
− PLpi

]2
, (2)

where PLm is the average measured path loss,PLp is the
predicted path loss at each point obtained as in (1), andk
is the total number of points. By substituting (1) into (2) and
differentiating the result in order to minimize the error, the
path loss exponent is obtained as

n =

∑k
i=1

[
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− PL(d0)

]

log
(
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)
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[
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(
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)]

log
(

di
d0

) . (3)

B. Log-Normal Shadowing

While the log-distance model is deterministic, the random
effect due to objects near to the receiver can be characterized
using the log-normal shadowing model [4]. This model in-
cludes a random variable (RV)Xσ to the log-distance model
given in (1), which follows a Gaussian distribution of zero
mean and standard deviationσ. Therefore, to empirically
determine this model, once the value ofn is obtained as
described in the above section, the log-distance model is
used as the expected value, and the measurement points are
projected over that value. Then,σ is calculated as

σ[dB] =

√

√

√

√

N
∑

i=1

(Xi − µ)2

N
, (4)

whereXi are the projections,µ is the mean of the distribution
(0 by considering the path loss model as reference), andN is
the number of measurements.

III. M ETHODOLOGY

To predict the channel propagation model, measurements
of RSS at the anchor node (receiver) of the signal transmitted
from a mobile node (transmitter) were taken on 5 different
points in order to eliminate both temporal and spacial variation
of the channel. To eliminate the temporal variation, at each
point, 20 measurements were taken in intervals of 30 min.
Moreover, to eliminate the spacial variation, measurements
were taken in others 10 points separated 10 cm for each
original point. Then, the average RSS for each point is calcu-
lated by finding the expected value of all measurements. Thus,
from (3) and (4), the experimental values for the corresponding
model parameters were obtained asn = 1.0028 andσ = 0.3372.
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Fig. 1. Theoretic and adjusted curves from measurements points.
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Fig. 2. Error in evaluation of coverage area by number of measurements.

Fig. 1 shows the curve attained by replacingn as obtained
in (1), and the fitted curve obtained in Matlab from the
measured points, where it was consideredPL(d0) = 70.96

dB at d0 = 1 m. Note that the theoretical and fitted curves
are almost overlapping, thus verifying the accuracy of the
theoretical calculations.

IV. COVERAGE SENSOR

In order to verify our model, an application for sensors
that predicts if a transmitter is inside a coverage area was
employed. For that purpose, measurements of RSS were taken
at 17 different distances from 1 to 5 m, since the coverage
area was set to 3 m. Then, the path loss model determined
in Section III was used to predict whether the transmitter is
inside or outside the coverage area. Fig. 2 shows the error
percentage as a function of the number of measurements. It is
observed that, for 200 or more measurements (≈ 30 min), an
error of less than 12% is attained.

V. ENERGY MANAGEMENT

The Solar Energy Harvesting Module (SEH-01) of the
TI eZ430-RF2500-SEH kit is based on a photovoltaic cell
responsible for converting the incident light into electrical
energy. Then, a boost converter is used to increase the voltage
to a proper level to charge the EnerChip EH CBC5300 inner
batteries on the SEH-01. The device power management was
observed by testing its behavior whenever the photovoltaiccell
or the batteries EH CBC5300 act as the main power supply
in two distinct experiments as follows.

1) EnerChip batteries:The first experiment aims to demon-
strate the autonomy of the EnerChip batteries whenever the
photovoltaic cell is not able to provide enough energy for
the proper operation of the device. For such evaluation, the
SEH-01 was supplied by a constant luminescent source of
light for 30 minutes, then the mobile node was disconnected
from the photovoltaic cell and the EnerChip took its place,

TABLE I

COMPARISON BETWEEN THEENERCHIP BATTERY DURATION AND TESTED

TRANSMISSION INTERVALS

Inteval between transmissions (s)
5 10 20 40 120 240

Duration (s) 2189 3884 7497 15765 29049 45935
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Fig. 3. Registered faults percentual according to the incident illuminance.

ensuring the voltage supply for the microcontroller. Then,pe-
riodical transmissions were performed until the batterieswere
discharged. This process was repeated for all the availabletime
interval settings. It was observed that the device was capable
of reaching over 12 hours for the largest period of inactivity
available (≈ 4 min) and almost 37 min for the shortest period
(≈ 5 s), as shown on Tab. I.

2) Luminous Influence:The second experiment aims to
analyze the luminous influence over the device operation for
distinct levels of luminescence. For this purpose, the device
was exposed to a controlled constant light source and 570
measurements were recorded. Then, the elapsed time was
analyzed between measurements with a time interval of 5
s. In this way, intervals greater than 5 s were computed as
transmission failures, thus a failure occurrence probability
was obtained. Note from Fig. 3 that for lower values of
illuminance, the device presents more instabilities. However,
from 300 lux, the failure rate is below 14%.

VI. CONCLUSIONS

In this paper, an experiment-based channel model for a
WSN based on the TI eZ430-RF2500-SEH kit, which op-
erates with solar energy harvesting, was obtained through
measurements of the received signal strength in an indoor
environment. The model was tested through a coverage sensor
application. It was observed that the sensor attains almost90%
of accuracy for a number of measurements, greater than 200.
Thus, this is not suitable for delay-constrained applications,
but useful for many other applications that doesn’t require
precision, immediate feedback or have few resources. It was
also determined that, under insufficient light conditions,the
WSN attains up to 12 hours of autonomy for a high load of
transmissions. REFERENCES
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