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Abstract— Rank-metric codes in matrix representation are
used by Koetter, Kschischang, Silva in their theory of random
network coding. They showed that the decoding procedure
can be reduced to decoding of rank codes. In this paper, we
analyzed situations under different conditions at the decoder
and establish if there are errors only or some type of mixture
of errors and erasures. For correcting we used Gabidulin
decoding algorithms. In many situations this analysis helps to
choose a suitable algorithm and to eliminate some of computing
operations. An example is given.
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I. INTRODUCTION

We consider Koetter, Kschischang, Silva random network
codes [1] – [4]. The code construction is based on rank-
metric codes in matrix representation [5] and the decoding
procedure can be reduced to decoding Gabidulin rank codes.

Our aim is to show that it is possible to eliminate
some computation operations at the decoding procedure if
preliminary to analyze code matrix parameters at the receiver
side. In this case, we know what a specific situation occurs:
there are errors only or a definite type of errors and erasures.
We can recomend to use a suitable decoding algorithm. In
many situations it allows to eliminate some of computing
operations, hence, to decrease complexity.

Gabidulin’s fast decoding algorithms for rank codes were
proposed in [5], [6]. The notions ”rank column erasures”
and ”rank row erasures” were introduced in [7], as well
as the first fast algorithm for the simultaneous correcting
random rank errors and rank erasures. New algorithms were
proposed for generalized erasures in [8], [9], [10]. Inde-
pendently, the algorithms for the simultaneous correcting
random rank errors and generalized rank erasures were
proposed in [1]-[4] in connection with the random network
coding. Let us remark that in these papers generalized
row erasures and generalized column erasures are called
”erasures” and ”deviations” correspondingly.

The paper is constructed as follows. In Section II, we
give main notations, definitions and remind some results
concerning rank metric codes. In Section III, we refer to
Köetter, Kschischang, Silva network codes to present their
communication network model and lifting construction of
the code. In Section IV, we present our way of preliminary

transformations. It is similar to the approach of the paper
[2]. It follows to the same construction of the received
code matrix and does not pretend to look as a new result.
Here, we prove two lemmas, one of them is about a low
bound of error rank, another is about an auxiliary invertible
matrix. In Sections V, we analyze different situations at
the decoder and recommend a suitable decoding algorithm.
The rank decoding algorithm for the most difficult situation
is demonstrated by an example. Section VI concludes the
paper.

II. RANK METRIC AND RANK CODES

Let Fq be a finite field of q elements and Fqn an extension
field of degree n. Let Fn×m

q be the set of n ×m matrices
over Fq .

We denote by Fn×m
q the set of n×m matrices over the

field Fq . We denote by Fm
qn the set of vectors with length

m over the extension field Fqn . There exists a one-to-one
correspondence between Fm

qn and Fn×m
q . For a chosen basis

of the extension field Fqn over the base field Fq , replace
each coordinate vi in a vector v ∈ Fm

qn by the n-column of
coefficients in Fq representing this element. It gives a matrix
M ∈ Fn×m

q corresponding to v.
The rank norm of a matrix M ∈ Fn×m

q is defined as
the ordinary algebraic rank ρ(M) of M . The rank distance
between two conformed matrices M1 and M2 is defined as
the rank of their difference: drank(M1,M2) = ρ(M1−M2).

The rank norm ρ(v | Fq) of a vector v ∈ Fm
qn is

defined as the minimal number of coordinates vi of v which
are linearly independent over the base field Fq . The rank
distance between two vectors v1 and v2 is defined as the
rank of their difference: drank(v1,v2) = ρ(v1 − v2).

A matrix code M is defined to be any subset of the set
of n×m matrices M ⊆ Fn×m

q . For any code M, the code
rank distance d(M) = dr is defined by dr = min(ρ(M1 −
M2) : M1,M2 ∈ M; M1 6= M2). It is clear, that dr ≤
min{n,m}.

A vector code V is defined to be any subset of the
set of vectors V ⊆ Fm

qn with length m. For any code V,
the code rank distance d(V) = dr is defined by dr =
min(ρ(v1 − v2 | Fq) : v1,v2 ∈ M; v1 6= v2). It is
clear, that dr ≤ min{n,m}. The one-to-one correspondence
mentioned above allows to construct a matrix code M
using a given vector code V. Conversely, given a matrix
code M one can construct a vector code V with the same
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metric properties. It is clear, that |M| = |V|. The vector
representation is useful for rank code constructions and for
the description of decoding algorithms (see, [5]). The matrix
representation is useful for the code modulation theory, for
the space-time coding theory [11], and for random network
coding [2]. For a given dr, the cardinality of any matrix
code M, respectively, of the corresponding vector code V,
satisfies the Singleton-style bound [5]:

logq |M| = logq |M| ≤ mn− (dr − 1) max{n,m}.

Codes reaching this bound are called maximum rank dis-
tance codes, or, MRD codes. First linear matrix MRD codes
were constructed in [12]. First linear vector MRD codes and
associated matrix codes were proposed in [5].

Let a code matrix M of a code M with distance dr be
transmitted through a channel. Let Y = M+E be a received
matrix, where E is a matrix of errors. An error is to be
correctable, if one can recover uniquely a code matrix M
from the received matrix Y.

Sorts of correctable errors depend on a priory knowledge
on the structure of E. Assume, there is no knowledge. Call
E a random rank error, denote by Erand and represent as
Erand = TU, where a matrix T is a full rank n× t matrix
over Fq unknown to the decoder; a matrix U is a full rank
t × m matrix over Fq unknown to the decoder; the rank
t of matrices Erand, T, U is unknown to the decoder. A
random rank error Erand is a correctable matrix of errors,
if 2t ≤ dr − 1. Correcting random rank errors is fulfilled in
the vector mode by converting a matrix Y ∈ Fn×m

q into a
vector y ∈ Fm

qn ( [5], [6]).
A matrix of errors is called an erasure, if there exists a

side information on the error at the receiver. A matrix of
errors denoted Erow is called a rank row erasure if it is of
the form Erow = AR, where a matrix A is a full rank n×v
matrix known to the decoder; a matrix R is a full rank v×m
matrix unknown to the decoder; the row erasure rank v is
known to the decoder. A matrix Erow is a correctable row
erasure matrix, if v ≤ dr − 1.

A matrix of errors denoted Ecol is called a rank column
erasure if it is of the form Ecol = WC, where a n × l
matrix W is unknown to the decoder; the l ×m matrix C
is known to the decoder; the column erasure rank l is known
to the decoder. A matrix Ecol is a correctable column erasure
matrix, if l ≤ dr − 1.

In general, a matrix E can be represented in the form

E = Erand + Erow + Ecol.

It is a correctable matrix of errors, if the following condition
is satisfied [7], [2]:

2t+ v + l ≤ dr − 1.

III. KÖTTER–KSCHISCHANG–SILVA CODES

A. Communication network model
Consider a communication network, where a single source

transmits information to a single destination. The source
formats the information to be transmitted into n packets

X1, . . . , Xn of length n + m over the finite field Fq and
constructs a (n× (n+m)) matrix X with these packets as
rows. In the Kötter–Kschischang–Silva model ([1], [2]) the
row spanned subspace of X is considered as the message.
Therefore the matrix X can be treated as a generator matrix
of the subspace.

Each intermediate node calculates random linear combi-
nations of ingoing packets, where a packet is represented
as an element of a finite field Fqn+m . The node retransmits
randomly calculated packets. Therefore, the destination col-
lects a random number nr of packets Y1, . . . , Ynr

of length
n+m and creates a (nr× (n+m)) matrix Y. The number
nr of received packets can be less than, equal to or greater
than the number n of transmitted packets. The problem is
to recover the original packets X1, . . . , Xn or the matrix X
from the received matrix Y. The transmitted matrix X and
the received matrix Y are related by the equation

Y = AX + Eout, (1)

where A is an nr × n matrix corresponding to the overall
linear transformation applied by intermediate nodes of the
network. In general, the matrix A introduces an inner
corruptions of the transmitted matrix X. A matrix Eout is
an outer nr × (n + m) matrix of errors. For example, it
can be created by Byzantine intruders inside the network
introducing error packets z1, . . . , zl of length n + m each.
They can be considered as rows of a l × (n + m) matrix
Z. Later, on route to the destination, the overall linear
transformation applied to z1, . . . , zl are described by a nr×l
matrix B. In this case, the outer matrix of errors is the matrix
Eout = BZ with rank l, where B is nr×l matrix. In wireless
networks, a matrix Eout can appear from a special noise
source outside of the network. If its rank is equal to l, it can
be still represented as BZ simulating the previous model.
The relation (1) is the basic model, it is called random
network coding channel (RNCC) [2].

B. Lifting construction of the network code

Let M be a matrix code consisting of matrices M of size
n×m.

A lifting construction network code C is a set of the
generator matrices X of the form

X =
{
X : X =

[
In M

]}
,

where In is the identity matrix of order n while M is a code
matrix.

In [2], it is proposed to use rank-metric Gabidulin codes
in the matrix representation as M. We denote such a code
in the lifting construction as a KKS lifting code.

Assume that a source uses a KKS lifting code X and
transmits a matrix X =

[
In M

]
. At the destination side a

matrix

Y = AX + Eout
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is received, where A is a random nr × n matrix, Eout is a
nr × (n+m) matrix of errors. Represent AX and Eout as

AX =
[
A AM

]
,

Eout =
[
E1 E2

]
,

where E1 and E2 are matrices of sizes nr ×n and nr ×m,
respectively. Then

Y =
[
A + E1 AM + E2

]
=
[
Y1 Y2

]
. (2)

The problem is to recover the matrix M. It is assumed
that the received matrix Y has rank nr.

IV. PRELIMINARY TRANSFORMATIONS

Let rank ρ(Y1) = r ≤ min{nr, n} and rank ρ(Eout) = l.
Since A = Y1 −E1, rewrite Eq. (2) as

Y =
[
Y1 Y1M−E1M + E2

]
. (3)

Apply to the matrix Y those linear transformations which
corresponds Gauss’ elimination procedure applied to the
matrix Y1. There exists the unique non singular nr × nr
matrix S which transforms the matrix Y1 to the reduced
row echelon form. Multiply both sides of Eq. (3) to the left
by the matrix S:

SY =
[
SY1 SY1M− SE1M + SE2

]
=

[
G R
0 C

]
,

(4)

where G is the r×n matrix with leading ”1”’s in each row
and O is the all zero (nr − r)× n matrix.

The matrix R = GM+S1(−E1M+E2) and the matrix
C = S2(−E1M + E2) are known, rank (C) is known:
ρ(C) = nr − r. The matrix S1 consists of the r upper rows
of S. The matrix S2 consists of the nr − r last rows of S.

Lemma 1: The following inequality is valid:

nr − r ≤ l. (5)

Proof: We have

ρ(C) = nr − r = ρ(S2(−E1M + E2))
≤ min{ρ(S2), ρ(−E1M + E2)}.

Since ρ(S2) = nr − r, it follows

ρ(S2) ≤ ρ(−E1M + E2) ≤ l.

Represent the matrix Eout as

Eout = BZ, (6)

where B is a nr× l matrix of rank l and Z is a l× (n+m)
matrix of rank l. This representation is not unique.

Lemma 2: There exists a representation (6) with B =[
B1 B2

]
, where B1 is a nr × (nr − r) submatrix of rank

nr−r, B2 is a nr×(l−nr+r) submatrix of rank l−nr+r,
such that the square matrix T = S2B1 of order nr − r is
invertible.

Proof: The matrix S2B has size (nr−r)×l and should
have rank nr−r. Otherwise the rank of C would be strictly
less than nr − r. Hence there exist nr − r columns H =[
bj1 bj2 . . . bjnr−r

]
of B such that S2L is a invertible

matrix. One can move these columns to the first nr−r places
choosing a suitable matrix V. Thus B1 = H and T = S2B1

is invertible.
We have also E1 = BZ1, E2 = BZ2, where Z =[

Z1 Z2

]
. Rewrite the matrix −E1M + E2 as

−E1M + E2 = B(−Z1M + Z2)
= B1W1 + B2W2.

−Z1M + Z2 =

[
W1

W2

]
.

The relation (4) can be rewritten as

SY =

[
G GM + S1B1T

−1TW1 + S1B2W2

O TW1 + S2B2W2

]
.

(7)
Since TW1 = C− S2B2W2, we obtain

R = GM + S1(B1T
−1)C− S1(B1T

−1S2 − S1)B2W2).
(8)

The matrix R has r rows. It should be extended to n rows by
inserting the all zero rows in the specific manner as proposed
in [2]. Thus the matrix R with inserted zero rows is denoted
R̂ etc. We have

R̂ = ĜM+ Ŝ1B1T
−1C− Ŝ1(B1T

−1S2 − S1)B2W2). (9)

Represent the n× n matrix Ĝ as

Ĝ = In + L,

where L has exactly n−r non zero columns. Denote by D =
Ŝ1B1T

−1 and by Erest = −Ŝ1(B1T
−1S2 − S1)B2W2).

The rank of D is not greater than ρ(B1) = nr−r. The rank
of Erest is not greater than ρ(B2) = l − nr + r. Then

R̂ = M + LM + DC + Erest. (10)

The term R̂ in the left side of the equation (10) can
be interpreted as received matrix as if a code matrix of
a rank code is transmitted. The first term M in the right
side corresponds to the transmitted code of a rank code. The
second term LM (L is known) corresponds to a generalized
rank row erasure of rank n − r. The third term DC (C is
known) corresponds to a generalized rank column erasure of
rank nr−r. The fourth term Erest corresponds to a random
rank error of rank t = l − nr + r.

V. ANALYSIS AND DECODING

From now on, we can use rank decoding algorithms [7]-
[10]. The matrix M can be successfully recovered, if the
following condition is satisfied ([10]):

(n−r)+(nr−r)+2(l−nr+r) = 2l+n−nr ≤ dr−1 (11)

First, let us analyze parameters n, nr, r, l at receiver side.
All of them, except l, are known. There are the following
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relations between them: n ≥ r, nr ≥ r, l ≥ nr−r. It gives 4
different cases to use different variants of the rank decoding
algorithm.

1) Let be nr = n = r. That means there is no erasure of
any types. We use the decoding algorithm which can
correct errors only. If t > 0, that is l > nr−r = 0, this
algorithm corrects errors under condition 2l ≤ dr−1.
If t = 0, that is l = nr − r = 0, the syndrome is all
zero component vector, there is no errors.

2) Let be nr < n, nr = r. That means there are row
erasures with rank n− r, there is no column erasure.
We use the decoding algorithm which can correct row
erasures and errors under condition 2l+(n−r) ≤ dr−
1. If l = nr−r = 0, there is no error. If l > nr−r = 0,
errors exists.

3) Let be nr > n, n = r. That means there are column
erasures with rank nr − r. We use the decoding al-
gorithm which can correct column erasures and errors
under condition 2l+(nr−r) ≤ dr−1. If l > (nr−r),
errors exist, if l = (nr − r), there is no error, only
column erasures.

4) Let be n > r, nr > r. That means there are row
erasures with rank n − r and column erasures with
rank nr − r. We use the decoding algorithm which
can correct both types of erasures and errors under
condition (11). If l = nr − r, there is no error, there
are row erasures and column erasures only. If l >
nr−r > 0, there are errors and both types of erasures.

Hence, the fourth case is the most computable. We show
this rank decoding algorithm by an example.

Example 1: Let q = 2. Construct (5, 1, dr = 5)-rank
code using the irreducible polynomial f(λ) = λ5 + λ2 + 1
with a primitive root α. The parity check matrix is

H4 =


α2 α29 α5 α14 α9

α4 α27 α10 α28 α18

α8 α23 α20 α25 α5

α16 α15 α9 α19 α10

 .
Choose a code vector

g =
[
α α30 α18 α7 α20

]
.

The destination receives the corrupted matrix

Y =
[
Y1 Y2

]
=


1 1 0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0 1 0
0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 1 0 0

 .
First of all, let us analyze the code matrix parameters.
We have nr = n = 5, r = 4, that is n > r, nr > r. Hence,

there exist row erasures with rank 1, column erasures with
rank 1. We know code distance dr = 5, so the equation

(11) is valid for l = 2. We can correct simultaneously row
erasure with rank 1, column erasures with rank 1 and error
with rank t = l − 1 = 1.

After preliminary transformation we have

R̂ =


0 1 0 1 0
0 0 1 1 0
0 1 1 0 0
1 0 1 0 1
0 0 0 0 0

 = M + LM + D̂C + Erest, (12)

where the matrix L has all columns, except the last one, with
all zero entries, the last column as a vector is (01001)T , the
matrix C is C = 00100.

Let us start the decoding procedure corresponding to the
fourth case. In consists in the following actions.

• Convert the matrix R̂ in a vector y:

y = [α α5 α12 α18 α29]. (13)

• Write down the total error as a sum of its parts:

etotal = (erand + erow + ecol), (14)

where erand = e1u1 is random error of rank 1, e1 is an
element of the field F25 , u1 = [u11 u12 u13 u14 u15]
is a vector with five components in the base field F2.
Elements e1 and u1 are unknown. We have erow = ar1,
where a = α30 corresponds to the last column of the
matrix L. A vector r1 = [r11 r12 r13 r14 r15] is an
unknown vector with five components of the base field.
We have ecol = w1[0 0 1 0 0], where w1 is an unknown
element of the field F25 and [0 0 1 0 0] = C.

• Calculate the main syndrome Si and its parts Sirand,
Sirow,Sicol.

Si = yHT = [α5 α28 α3 0] = [Si0 Si1 Si2 Si3];
Sirand = e1u1H

T = e1x1 + e1x
2
1 + e1x

4
1 + e1x

8
1;

Sirow = ar1H
T = α30θ1 + α30θ21 + α30θ41 + α30θ81;

Sicol = w1CH
T = w1γ1 + w1γ

2
1 + w1γ

4
1 + w1γ

8
1 ,
(15)

where there are the following notions:

x1 = α2u11 + α29u12 + α5u13 + α14u14 + α9u15,
θ1 = α2r11 + α29r12 + α5r13 + α14r14 + α9r15,
γ1 = α5.

(16)
Get a system of the main syndrome equations by
equalizing of the corresponding syndrome components:

α5 = e1x1 + α30θ1 + w1γ1;
α28 = e1x

2
1 + α30θ21 + w1γ

2
1 ;

α3 = e1x
4
1 + α30θ41 + w1γ

4
1 ;

0 = e1x
8
1 + α30θ81 + w1γ

8
1 ,

(17)

• Elimination of generalized column erasures.
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Introduce the linearized polynomial Γ(x) = Γ0x +
Γ1x

2, which roots are γ1 and 0. Put Γ1 = 1, obtain
Γ0 = α5. Construct the matrix

Γ =


Γ0 0 0
Γ1 Γ2

0 0
0 Γ2

1 Γ4
0

0 0 Γ4
1

 =


α5 0 0
1 α10 0
0 1 α20

0 0 1

 .
S̃i0 = α11 = e1x̃1 + α30θ̃1,

S̃i1 = α13 = e1x̃1
2

+ α30θ̃1
2
,

S̃i2 = α23 = e1x̃1
4

+ α30θ̃1
4
,

(18)

where x̃1 = Γ(x1), θ̃1 = Γ(θ1). Let us raise both
sides of this system: raise the first equation to a power
2n = 25, the second equation to a power 2n−1 = 24,
the third equation to a power 2n−2 = 23. We get the
system

S̃i0 = α11 = e1x̃1 + α30θ̃1,

S̃i1 = α22 = e161 x̃1 + α15θ̃1,

S̃i2 = α23 = e81x̃1 + α16θ̃1.

(19)

• Elimination of generalized row erasures.
Introduce the linearized polynomial V (x) = V0x +
V1x

2, which roots are α30 and 0. Put V1 = 1, obtain
V0 = α30. Construct the matrix

V =

V 16
1 0
V 16
0 V 3

1

0 V 8
0

 =

 1 0
α15 1
0 α23

 .
Multiply each component of the syndrome vector S̃i to
the left by the matrix V and get a new modified system
of the syndrome equations:

Ŝi0 = α8 = x̃1ẽ1
2,

Ŝi1 = α8 = x̃1ẽ1,
(20)

where ẽ1 = (V (e1))8. The solution of this system is
x̃1 = α8, ẽ1 = 1. Now, remind x̃1 = Γ(x1), ẽ1 =
(V (e1))8. Get the equations:

x̃1 = α8 = x21 + α5x1,
ẽ1 = 1 = (α30e1 + e21)8.

(21)

Take solutions x1 = α12, e1 = α5, which were
obtained by exhaustive search.
Use the first equation (16) and get u1 = [0 1 0 1 1].
The random error in the the vector form is

erand = e1u1 = α5[0 1 0 1 1].

• Let us go to correcting row erasures.
Use the first equation of the modified syndrome system
(19), the obtained values e1 = α5, x̃1 = α8 and obtain
θ̃1 = α17. Use the notion for θ̃1 = Γ(θ1) and obtain

θ1 = α7. Use the notation for θ1 (16) and obtain the
vector r1 = [0 1 0 1 0], hence, erow = α30[0 1 0 1 0].

• To get solution for column erasure use the first equation
of the main syndrome system (17) and obtain w1 = α8.
Hence, ecol = α8[0 0 1 0 0].

• After all, collect all parts of the error and erasure and
get the total error:

etotal = (erand + erow + ecol) = [0 α26 α8 α26 α5].

y+etotal=(α α5 α12 α18 α29)+(0 α26 α8 α26 α5)
= (α α30 α18 α7 α20) = g.

VI. CONCLUSIONS

The analysis is given, when decoding Kötter–
Kschischang–Silva codes can be reduced to correcting only
rank erasures, only random rank errors, or, simultaneously
rank erasures and random rank errors. Ranks of row
erasures as well as column erasures can be found exactly
from a received matrix. Lower bound of random error
rank can be easily estimated. The conditions for different
situations are obtained and a suitable decoding algorithm is
proposed.
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