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A Hybrid Machine Learning Approach for Mobile
User Positioning in Cellular Networks
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Abstract— The outstanding growth of location-based services
and applications for mobile devices has motivated research
about wireless positioning techniques for outdoor and indoor
environments. In the present paper, a machine learning approach
is proposed for finding the mobile user location. More precisely,
a hybrid machine learning technique is proposed to obtain
the position of a mobile user in an outdoor environment of
cellular networks. The proposal employs k-Nearest Neighbors as
a regression model to find the distances between the mobile and
the base stations, and Genetic Algorithms to estimate mobile
position. Simulation results show that the proposed algorithm
has better performance than the COST-231/Nelder-Mead tri-
lateration technique. Friedman and Nemenyi tests are used to
statistically validate the results.

Keywords— Mobile positioning, machine learning, cellular net-
works.

I. INTRODUCTION

Wireless positioning systems have received increasing at-
tention in recent years [1], [2]. Position obtaining through
wireless and mobile technologies is a key factor to achieve
an accurate knowledge of mobile terminal location, which is
essential for providing location-based services [3].

Radiolocalization is one of the techniques to derive the
positioning of mobile terminals in wireless systems. In cellular
networks, the localization of a mobile user (MU) is obtained
by measuring physical parameters of the radio frequency sig-
nals transmitted between the base transceiver stations (BTSs)
and the MU. After, the physical parameters are used to obtain
distance information from MU to the BTSs, that are assumed
to be reference points. Finally, MU location is estimated from
geometrical properties by using processing algorithms.

Machine learning (ML) is a data-driven approach, which
means that it extracts information from past observations to
make accurate predictions. Recently, many researchers have
used ML techniques to improve the accuracy of the MU
location in wireless environments [4]. For example, in [5], it is
shown that the user location can be inferred by ML techniques
using phone’s power consumption information.

In this paper, an ML approach is proposed for finding the
MU position in an outdoor environment of cellular networks.
More precisely, we propose a hybrid ML technique to model
the relationship between the received strength signal indicator
(RSSI) measurements and the position of the mobile terminal.
The proposed technique combines k-Nearest Neighbors and
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Genetic Algorithms. The former is used as a regression model
to find the distances between the MU and the BTSs, while the
latter is applied to estimate the mobile position. Simulation re-
sults show that the proposed algorithm has better performance
than the COST-231/Nelder-Mead (NM) trilateration method.
Friedman and Nemenyi tests are used to statistically validate
the results.

The remaining of the paper is structured as follows. In
Section II-A, lateration-based positioning techniques are in-
troduced. General concepts about k-Nearest Neighbor and
genetic algorithms are presented in Section II-B. Also in
Section III, a hybrid ML technique for MU positioning in
an outdoor environment of cellular networks is described.
Numerical results are presented in Section IV and conclusions
are drawn in Section V.

II. BACKGROUND

A. Lateration-Based Positioning Techniques

Lateration-based mobile positioning techniques are a well-
known localization method that estimate the position of an
object by measuring its distances to multiple reference points
called anchors [6]. Using this technique in the context of
cellular networks, a solution to locate an MU consists basically
on a distance estimation from the MU to the BTSs of the
network.

When three BTSs are assumed, we have a trilateration
localization technique in which the MU positioning problem
can be expressed as a system of quadratic equations such that

di
2 = (xp − xi)2 + (yp − yi)2, i = 1, 2, 3 , (1)

where di is the estimated distance between the MU and the i-
th BTS and the pairs (xp, yp) and (xi, yi) are, respectively, the
latitude and the longitude of the MU and the i-th BTS. The
distances di can be obtained, for example, using empirical
propagation models, as Okumura-Hata and COST-231 [7].
Given di, we desire to estimate the coordinates (xp, yp) of
the MU. The trilateration positioning technique is equivalent to
find the solutions to the system defined by (1) using any direct
optimization method, such as Nelder-Mead (NM) or Newton-
Raphson. More details about lateration-based positioning tech-
niques can be found in [8].

B. Machine Learning Techniques

1) k-Nearest Neighbors: k-Nearest Neighbors (kNN) is a
classifier that belongs to the family of instance-based learning
algorithms [9]. In this family, the training instances are stored
and no explicit generalization is performed. This strategy
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uses a different concept when compared with other methods,
such as Artificial Neural Networks and Decision Trees, that
construct a general description of the target function based
on the training instances. So, in instance-based learning, the
generalizing is only performed when a query instance is
classified.

The kNN algorithm can be used in classification or regres-
sion tasks and it works as follows [10]: given a query instance
Xi, the first step is to find the k closest training instances to
Xi; these are the neighbors of Xi. More precisely, given that
each instance is described by an m-dimensional feature vector
Xi = [Xi1, Xi2, . . . , Xim], the distance between two instances
Xi and Xj is defined as d(Xi,Xj), such that

d(Xi,Xj) =

√√√√ m∑
r=1

(Xir −Xjr)2 . (2)

After calculating the k neighbors of Xi using Equation (2),
the class of Xi is assigned as the most common class among
its k nearest neighbors for classification problems. However,
for regression problems, the predict value of Xi is given by
the average of the values of its k nearest neighbors, according
to

f̂(Xi)←
∑k
i=1 f(Xi)

k
, (3)

where Xi is a training set instance and f(Xi) is the target for
Xi.

When dealing with very large datasets, kNN is computation-
ally expensive to find the k nearest neighbors. On the other
hand, an advantage of the kNN algorithm is that there is no
cost associated to the learning process and, besides, kNN is
able to learn complex concepts by local approximation using
a simple strategy.

2) Genetic Algorithms: Genetic algorithms (GAs) were
introduced by Holland in 1975 and have been used in problems
involving optimization and search [11]. As they are based on
Darwin’s Evolutionary Theory, the key issue underlying GAs
is natural selection and survival of the most adapted (fittest)
individuals.

In GAs, the search for the best solution of a problem is
conducted by using a fitness function, which is used to assess
the quality of candidate solutions. In GAs, the solutions are
represented by chromosomes. Along the evolutionary process,
the best chromosomes (which correspond to the best solutions
of the problem, according to the fitness function) are selected
and submitted to the operations of crossover and mutation,
which generate the next offspring (descendants). The process
of best chromosomes selection, crossover and mutation is
repeated until a stopping criterion is reached. It is important to
observe that the search space is given by the set of all possible
configurations a chromosome can assume.

Different methods can be used for the purpose of best chro-
mosomes selection, such as roulette wheel selection, elitism
and tournament selection. Common stopping criteria are: a
fixed number of generations is reached; a fixed percentual
of highest fitness chromosome has reached a plateau in a
fixed number of successive iterations (that is, better solutions
concerning that percentual of chromosomes are no longer

produced in successive generations); or a combination of the
previous conditions.

III. PROPOSED ML APPROACH

In this work, we propose a hybrid ML algorithm to develop
models of the relationship between the RSSI measurements
and the position of the MU. In the following subsections,
a description of the proposal and the experimental setup are
presented.

A. Proposal Description

The proposed algorithm employs kNN as a regression model
to find the MU-BTS distances di. In addition, our proposal
uses GA as an optimization tool to find the solutions to the
system defined by (1). Based on this, the hybrid ML technique
proposed here is denoted as the kNN/GAq algorithm, where q
is the number of BTSs used in the regression model. Table I
shows the five steps of the kNN/GAq algorithm. The first step
of the proposed algorithm is referred to database building. To
do this, several radio frequency signals measurements of the
cellular network are collected using a scanner. More details
about the experimental setup considered in this work are
presented in Subsection III-B.

TABLE I
DESCRIPTION OF THE kNN/GAq ALGORITHM.

Step Description

1 Collect the scanner measurements (database building).
2 Store the training instances to obtain hypothesis functions with

kNN for predicting the MU-BTS distances (one for each BTS).
3 Collect the RSSI measurements from the sought mobile to all

BTSs.
4 Use kNN to predict the distances between the sought mobile

and the BTSs.
5 Use GA to estimate the position of sought mobile using the

distances predicted in Step 4.

The measurements obtained in the first step are used to build
the training and test datasets. The training dataset is used to
adjust the kNN regression model. For the regression model,
the features are the path loss for each BTS, and the target is the
MU-BTS distance. In other words, the kNN regression model
provides q hypothesis functions fi(·), i = 1, 2, . . . , q, that are
utilized to derive the distances between the MU and each one
of the q BTSs. Figure 1(a) illustrates the training stage of the
hybrid ML technique. Since q BTSs are considered, q distances
di, i = 1, 2, . . . , q, are obtained at the end of the training stage.

Many ML algorithms, such as kNN, have important param-
eters that cannot be set directly from the data. The process
of setting these parameters to obtain the best performance of
the model is known as tuning. To put it in another way, we
evaluate the kNN algorithm varying the parameter k (k is
an integer) in the interval [1; 45] to find the best fit model,
characterizing the second step of the algorithm. The 10-fold
cross-validation re-sampling technique [12] was used to find
the best k for each BTS. Table II shows the best values of
k for each BTS, the cross-validation distance error µ̄, and
its standard deviation µσ . We assume that q = 6 BTSs are
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Fig. 1. Diagram of the kNN/GAq algorithm: (a) Training stage to obtain q
hypothesis functions. (b) Validation using test stage (q hypothesis functions
followed by optimization using GA).

employed in the tuning process. The motivation for using six
BTSs is a promising trend to increase the density of BTSs in
urban areas. In accordance to [13], this tendency indicates an
expansion of the system capacity in the near future cellular
networks using small cells.

After the evaluation of the kNN regression model, the
proposed hybrid ML technique is ready to be employed. For
that, new measurements should be acquired using the scanner
in a practical situation (third step). In our experiment setup,
we use a test dataset from the measurements obtained in
the first step. Then, the last three steps of the kNN/GAq
algorithm consist in validating its accuracy. For each of the
q RSSIs used as input of the hypothesis functions fi(·), i =
1, 2, . . . , q, an MU-BTS distance di is obtained (fourth step).
Then, these q distances are applied to the GA in attempt to
achieve the localization of the MU, characterizing the fifth
step. Figure 1(b) illustrates the fourth and fifth steps of the
proposed ML technique.

In this step, the GA individual is a vector with the geo-
graphical position of the MU (latitude and longitude). Thus,
in the GA context, the MU estimated position will be given by
the individual with the highest fitness function value, which
as given by:

fg(xg, yg) = min
1≤i≤q

(
di −

√
(xi − xg)2 + (yi − yg)2

)
, (4)

where (xg, yg) is the GA individual, (xi, yi) is the position
of i-th BTS, q is the number of BTS and di is the distance
obtained using (1).

TABLE II
RESULTS OF THE TRAINING STAGE OF EACH kNN MODEL USING

10-FOLD-CROSS-VALIDATION FOR q = 6 BTSS.

BTS best k µ̄ (m) µσ (m)

BTS-1 7 86.0 10.4
BTS-2 5 88.2 13.2
BTS-3 7 90.4 9.2
BTS-4 5 88.2 13.2
BTS-5 5 104.0 13.4
BTS-6 5 86.5 5.4

The GA is set with an initial population of 250 individuals.
To evolve the population, uniform random mutation and local
arithmetic crossover are utilized [14].

B. Measurement Setup
We assume mobile radio wave propagation measurements at

1.8 GHz Global System for Mobile Communications (GSM)
frequency band. A drive test where measurements of the down-
link signal strength level were made in an urban environment
in the city of Recife-PE, Brazil.

Figure 2 illustrates the urban area of the city where the
measurements were taken, as well as the locations of all BTSs.
We should notice that the antenna of each BTS is set at a
given azimuth related to the true north. For BTSs-3 and 5,
the azimuth is 220◦, while for BTS-6, the azimuth is 60◦. For
BTSs-2 and 4, the azimuths are 10◦ and 120◦, respectively.
In total, 2956 measurements were performed using NEMO
FSR11 tool as a GSM pilot scanner. In the database building,
the training dataset consisted of 2756 measurements and the
test set with 200 measurements was considered.

BTS−1

BTS−2/BTS−4
BTS−3

BTS−5

BTS−6

0.4 Km

Measurements

Train Data

Test data

Fig. 2. Urban environment of the city of Recife-PE, Brazil with the indication
of the training measurements, testing measurements, and the locations of the
BTSs.

IV. NUMERICAL RESULTS

In this work, four positioning techniques are implemented.
In the first technique (C-231/NM), the COST-231 model is
used to predict the MU-BTS distances and NM optimization
method is applied to estimate the MU position. The second
technique (kNN/NM) consists on using the kNN algorithm
and the NM method to estimate the MU-BTS distances and
the MU position, respectively. In both techniques, the three
BTSs with lower distance prediction error are chosen. The
third and fourth techniques, named as kNN/GA3 (with three
BTSs) and kNN/GA6 (with six BTSs), refer to the hybrid
proposal. For all techniques considering three BTSs, the BTS-
1, BTS-4 and BTS-6 are used. The performance of the
positioning techniques is evaluated via computer simulations
using a test dataset with 200 samples. The ML algorithms are
implemented using R programming language, with emphasis
on the packages caret [15] and genetic algorithms [14].

1NEMO FSR1 is a modular digital scanning receiver providing accurate
RF signal measurements of wireless networks.
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(c) kNN/GA3 Predictions (d) kNN/GA6 Predictions

(a) COST−231/NM Predictions (b) kNN/NM Predictions

Points: COST−231/NM      kNN/GA3       kNN/GA6       kNN/NM       Real Position

Fig. 3. Prediction maps for each MU positioning technique.

Table III presents root mean square error (RMSE) of
the MU-BTS distances predicted using COST-231 and kNN
models for the following positioning techniques: C-231/NM,
kNN/GA3, and kNN/GA6. The BTSs 2, 3 and 5 were not used
for C-231/NM and kNN/GA3 techniques, since both tech-
niques employ three BTSs to estimate the mobile localization,
thus these RMSE values were omitted in Table III. With this
in mind, we can observe that the lower RMSE values were
obtained for kNN/GA6, while the higher ones are related to the
C-231/NM technique. These output values are used as inputs
for NM and GA optimization methods in order to find the MU
position. As we shall see, predicted MU-BTS distances with
low RMSE will increase the localization accuracy.

To compare the positioning techniques mentioned previ-
ously, we define the localization prediction error η as the dis-
tance difference between the real and the predicted positions,
measured in meters. Table IV provides a statistical analysis
of the localization prediction errors for each positioning tech-
nique. The average localization prediction error is represented
by η̄, its standard deviation by ησ , and the maximum and
minimum errors by ηmax and ηmin, respectively. Also in
Table IV, we can see that the kNN/GA6 algorithm presents

TABLE III
RMSE OF THE ESTIMATED MU-BTS DISTANCES.

BTS C-231/NM kNN/GA3 kNN/GA6

BTS-1 650.6 m 252.6 m 72.8 m

BTS-2 - - 71.3 m

BTS-3 - - 72.5 m

BTS-4 350.7 m 228.2 m 71.3 m

BTS-5 - - 96.3 m

BTS-6 388.0 m 220.8 m 75.3 m

TABLE IV
STATISTICAL ANALYSIS OF THE LOCALIZATION PREDICTION ERRORS FOR

THE CONSIDERED POSITIONING TECHNIQUES.

Pos. Tech. η̄ ησ ηmax ηmin

C-231/NM 550.0 m 352.3 m 1731.6 m 6.0 m

kNN/NM 352.7 m 473.1 m 2363.7 m 1.3 m

kNN/GA3 228.9 m 426.5 m 1777.1 m 0.9 m

kNN/GA6 132.4 m 168.8 m 890.3 m 1.5 m

an average error η̄ = 132.4 m, but the accuracy decreases
when using fewer BTSs, which can be observed for the
kNN/GA3 algorithm (η̄ = 228.9 m). Finally, the kNN/NM
technique presents η̄ = 352.7 m, while the C-231/NM exhibits
η̄ = 550.0 m.

For providing a graphical comparison, prediction maps can
be built for each positioning technique such as illustrated
in Figure 3. To obtain each map, we should distribute the
test points collected in the field and overlap them to those
evaluated by one of the considered positioning techniques. For
all maps, the actual MU positions are represented by gray dots.

Figure 3(a) shows the distribution of points acquired from
the C-231/NM technique, where the estimated positions cor-
respond to the green dots. It can be observed a concentration
of green dots that do not cover the entire region of the gray
ones. A possible justification for this concentration is the fact
that the three selected BTSs (1, 2, and 4) were not optimized
for the C-231 model, but for k-NN one.

In Figure 3(b), the estimated positions are related to the
kNN/NM technique and they are represented by yellow dots.
These points are obtained similarly as in the previous map
and we can notice that the yellow dots are less concentrated
than the green ones in Figure 3(a). Thus, if we compare the
C-231/NM and kNN/NM models, we verify that the kNN
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improved the prediction of the MU-BTS distances.
Figure 3(c) indicates the estimated positions given by the

kNN/GA3 algorithm using blue dots. We wish to highlight the
convergence of the estimated points and the real ones (gray
dots), i.e., they are very close to each other. This means that
the kNN/GA3 model is more accurate than the previous ones
(C-231/NM and kNN/NM). At last, Figure 3(d) indicates the
estimated positions given by the kNN/GA6 technique using
red dots. Comparing kNN/GA6 with kNN/GA3, we observe
that there are fewer real MU positions not covered by the
estimated positions in the former.

Another way to compare the positioning techniques ad-
dressed in this paper is by using histograms. Figure 4 shows
a histogram for each technique considering the test dataset, in
which the x-axis represents the localization prediction error η,
while the y-axis corresponds to the count of samples having
the same η. Analyzing the four histograms, it is possible to

(a) C-231/NM

(b) kNN/NM

(c) kNN/GA3

(d) kNN/GA6
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Fig. 4. Histograms of the localization prediction error η (in meters) for each
MU positioning technique.

verify that the kNN/GA6 technique is the best one, because
the majority of the samples are accumulated at the beginning
of the histogram, i.e., the errors remain around 250 m. The
second best technique is kNN/GA3, which had the accuracy
decreased by the outlier points with errors up to 1000 m. For
the other two techniques, we recognize that the errors are more
evenly distributed across the adopted range (0 – 2000 m).

Lastly, to verify if the differences between the performances
of the positioning techniques are statistically relevant, Fried-
man test with the Nemenyi post-hoc test are applied [16].

In this work, the Friedman test was performed over the test
dataset, for a confidence level α = 0.05, and resulted in p =
2.2·10−16. Thus, H0 (null hypothesis) can be rejected because
p << α, which means that at least two techniques differ. After
multiple comparisons made by the Friedman test, the Nemenyi
post-hoc test is used to make a pairwise comparison. The p-

value are smaller than the confidence level (α = 0.05) for
all pairwise comparison in the Nemenyi post-hoc test, which
imply that the techniques are different.

V. CONCLUSIONS

In this paper, a hybrid machine learning approach was
proposed for finding the mobile user position in an outdoor
environment of cellular networks. The proposal focused on
modeling the relationship between the radio strength signal
indicator measurements and the position of the mobile termi-
nal. For doing this, the hybrid technique combined k-Nearest
Neighbors (kNN) and Genetic Algorithms (GA). The prior
was used as regression model to obtain the distances between
the mobile user and the base stations, while the second was
employed to estimate the mobile localization as a solution of
an optimization problem.

Regarding the estimation of the distances between mo-
bile user and base stations, kNN was a better option when
compared to COST-231 propagation model. Concerning the
assessment of the mobile user position, the use of GA reduced
the distance prediction error when compared to the NM
method. Also, it was verified that the increase of base stations
in the hybrid technique diminishes the distance prediction
error. The price for this improvement in performance is a
higher computational complexity.

REFERENCES

[1] M. Veletic and M. Sunjevaric, “On the Cramer-Rao lower bound for
RSS-based positioning in wireless cellular networks,” Int. Journal of
Electronics and Communications (AEU), vol. 68, pp. 730-736, 2014.

[2] S. Yiu and K. Yang, “Gaussian process assisted fingerprinting local-
ization,” IEEE Internet of Things Journal, vol. 3, n. 5, pp. 683-690,
2016.

[3] M. Xin, M. Lu, and W. Li, “An adaptive collaboration evaluation model
and its algorithm oriented to multi-domain location-based services,”
Expert Systems with Apps, vol. 42, pp. 2798-2807, 2015.

[4] R. D. A. Timoteo et. al., “An approach using support vector regression
for mobile location in cellular networks,” Computer Networks, v. 95,
pp.51-61, 2016.

[5] Y. Michalevsky et. al. “PowerSpy: location tracking using mobile device
power analysis,” arXiv preprint arXiv:1502.03182, 2015.

[6] R. Zekavat and R. M. Buehrer, Handbook of Position Location: Theory,
Practice and Advances. John Wiley & Sons, 2011.

[7] P. E. Mogensen and J. Wigard, COST action 231-digital mobile radio
towards future generation systems: Tech. Report, European Cooperation
in Science and Technology, 1999.

[8] L. N. Silva et. al., “Calibragem de modelos de propagação aplicados
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