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Abstract— A top concern in Software Defined Networking
(SDN) is the management of network flows because of resource
limitation in SDN devices (such as TCAM size) and the signaling
overhead between the control and data plane elements. This work
performs an evaluation of reactive, proactive and active strategies
for creating flows inside an SDN network. The results indicated
a trade-off between memory space utilization and signaling
overhead, where each approach has benefits and drawbacks. The
proactive approach is more suitable when all paths are predicted
with high accuracy, resulting in high memory consumption and
low signaling overhead. When the network requires frequent
adjustments, the reactive strategy is indicated providing a low
memory consumption and high signaling intensive approach.
Finally, the active strategy can be used when memory and
signaling are critical problems because of the median memory
consumption and signaling overhead.

Keywords— OpenFlow Network; Software Defined Network-
ing; Performance Evaluation

I. INTRODUCTION

Software Defined Networking (SDN) is emerging as new
network paradigm that separates software and hardware roles
in devices (vertical integration), generalizes network devices
and functions, enables programmability of networks, and cen-
tralizes network management tasks[1]. The major feature of
SDN is the decoupling between control and data planes. The
centralization logic of SDN controller can allow a consistent
view of the network state, bring programmability to the
network, and also enforce network policies, routing decisions
and forwarding information.

There is some instantiation of the concepts of SDN [2], and
one of them is OpenFlow protocol [3], which is becoming
a standard de facto instance of SDN on the academic and
industry field [4]. In an OpenFlow network, the OpenFlow
switches often are deployed with Ternary Content Address-
able Memory (TCAM). TCAM memories are very fast, but
expensive, require much space in the chip of an OpenFlow
switch and have a high energy consumption.

A challenging network management task is the creation of
an efficient quantity of flow inside an OpenFlow network due
to the limitation of the resources (e.g. switches memory) and
the signaling overhead between data and control plane ele-
ments (OpenFlow switches and controllers, respectively) [5].
This way, if incoming packets do not found a match pattern
in the OpenFlow switch table (a table miss event), usually,
the default action is to contact the OpenFlow controller to
provide instructions. Because the quantity of the signaling to
create new flows is proportional to the size of the network,
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the overall number of control packets between controller and
switches may become problematic.

For OpenFlow networks, it is an issue to decide where
and when a network flow rule has to be installed. Therefore,
the aim of this paper is to evaluate the performance of flow
creation inside an OpenFlow Network. The main contributions
of this work are the follows:

1) Description and analysis of three algorithms for flow cre-
ation inside an OpenFlow Network: reactive, proactive
and active;

2) Performance evaluation of the three algorithms with an
emulation environment;

3) A discussion about the trade-off among OpenFlow rule
installation and the overhead communication between
OpenFlow switches and OpenFlow controller.

The remain of this work is organized as: Section II describes
the relevant works in the field of rule placement problem;
Section III details the three algorithms to be analyzed; Section
IV presents the experiments and description of the results; Sec-
tion V discusses the trade-off between signaling and memory
utilization in OpenFlow networks; Section VI highlights the
conclusions of this work.

II. RELATED WORKS

With regard to reducing the number of rules installed into
the SDN network, the works of Palette [6] and One Big
Switch [7] are proposals that tried to addressed the OpenFlow
switches memory limitation. They considered that the rules to
be installed are non-reducible, so they can not enforce rule
aggregations. Thus, the solutions distributed the routing rules
in the network in such a way that the routing semantics are
maintained, and the network policies are not violated.

The work of [8] also seeks to optimize the placement of
routing rules within an SDN network. It accomplishes this
by minimizing the resources required for the treatment of
network flows. With an algebraic model and using the Integer
Linear Programming, an optimization technique, to express
constraints in the end-to-end routing policy on the network,
the work indicated how to allocate a greater amount of traffic
over memory capacity constraints using the model proposed.
The work also performs comparisons with the solutions Palette
and One Big Switch and found similar values of optimization.
However, it overcomes the previous works in a scenario of
extreme memory shortage, when the SDN controller must be
used to maintain the minimum network operating state, even
if the network performance degradation occurs.

Furthermore, to reduce signaling overhead between Open-
Flow switches and OpenFlow controllers, it is necessary a
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prediction, or estimation of the network traffic, to allow rules
installation in advance, and before the traffic ingress into the
network. The accurate achievement prediction requires data
collections and induces signaling messages, which makes it a
difficult task.

For increase the utilization of TCAM space and avoid
TCAM misses, the authors in [9], presented a system that
combines an adaptive heuristic with proactive eviction by
choosing the timeout values of OpenFlow rules. They found
that over particular types of network, with the understanding
of the network traffic, is possible to outperform static timeout
policy (fix value of OpenFlow timeout rules). However, to
increase the utilization of the data plane elements memory, it
requires a heavy signaling overhead to the controller, because
of frequently fetching information about the switches and
flows states.

Thus, a trade-off among rule installation and the signaling
overhead between OpenFlow switches and OpenFlow con-
troller must be made. The work in [5] classified the flow
creation for OpenFlow networks into two categories: reactive,
the rules are created on demand to react upon flow events;
proactive, rules are populated in advance, that way the flow is
created before the packet arrives at an OpenFlow switch port.

Furthermore, the work of [10] already has compared reactive
and proactive approaches. However, one other option to create
flows inside an OpenFlow network is to use the bird’s eye
of SDN to active create network rules when the controller
already discovers the path that the packet will take. Therefore,
no previous works performed evaluation of the three groups
of flow creation (reactive, proactive and active), with regard to
memory capacity and signaling. The following section presents
the descriptions of this three approaches.

III. FLOW CREATION

Before delving into the algorithms, some concepts need to
be defined. An OpenFlow network uses the concept of flow to
carry traffic inside the network. A flow is a sequence of packets
sent from a particular source s to a particular destination d
following a given path [11], where the packets match with the
same fields values of a flow entry.

A path is an ordered sequence of OpenFlow switches and
links from a given origin to the destination. Another concept is
the endpoint. They are places inside an SDN network where
the network operator has some interest for packets to reach
that location. An endpoint (element belong to set O) can be a
host, a switch port connected to a load balancer appliance, the
ingress/egress of the backbone network, and others. Thus, an
endpoint consists of two elements. The first one is the source,
where the packets are matching to belong a specific flow, and
the destination, the place where the packets are released from
the flow. Specifically, this work models an OpenFlow network
as a directed graph (or digraph) G(V, E), where V is a set
of nodes (e.g. OpenFlow switches) and F a set of edges (e.g.
network links).

The topology of the OpenFlow network is assumed to be
known for applying the flow creation algorithms. Thus, the
OpenFlow controller has an instance of the data structure of

Algorithm 1 Reactive flow creation

Input: opi, G
1: s« get_src(opi, G)

d « get_dst(opi, Q)

v 4 get_switch(opi, Q)

action + get_next_hop(d, v)

if FT(v,t) < C, then
out_port < SW (v, next_hop)
match < MT(s,d)
opo < create_open flow(out_port, match, action)
send(opo, v)

end if

R e A A S o

_
=4

G. One way to reach that topology information is fetching
OpenFlow switches with control packets to discover the origin
and destiny of the links, switches, and hosts. Once the topology
is known, the problem is to discover the benefits and draw-
backs of three algorithms for rule creation inside an OpenFlow
network. The three algorithms to evaluate are: reactive flow
creation; proactive flow creation; active flow creation.

A. Reactive creation

The Reactive flow creation populated the flows on demand
to react upon incoming packet events, OFPT_PACKET_IN
messages[4]. When a packet that did not match any rule
installed into an OpenFlow Switch, often, the switch enqueues
the packet and informs the controller for a new flow creation.
Afterward, the controller computes the rules to be associated
with the new flow and installs them in the network. Once
the rules are installed, on the switches, packets are dequeued
and forwarded in the network. The freshly installed rules will
then process any subsequent packet of the flow without further
intervention of the controller [5].

Algorithm 1 describes how the SDN controller creates the
flows following the reactive creation logic. The algorithm
extracts from the Packet-In event (opi), the information about
which OpenFlow switch originated the event, the source and
destination for the new flow (lines 1- 3). In line 4, the
function get_next_hop(e,e) receives the destination and the
identification of the OpenFlow switch, and returns the action
information, which contains the output port and message to
modify the flow table. In line 5, it is verified whether the
OpenFlow switch has the capacity to install a new flow, then
an opo OpenFlow OFPT_FLOW_MOD packet[4] is sent to the
OpenFlow switch to install the rule with matching, action and
output port information for new flow constructed (lines 6-9).

B. Proactive flow creation

The algorithm to create a new flow with proactive logic is
present in Algorithm 2. Proactive flow creation uses the net-
work topology information of an OpenFlow network (G) and
the set of all endpoints (O). Thus, before a packet, belonging
to a particular flow, arrives at the OpenFlow network, all flow
rules have already been installed into the OpenFlow switches
for that packet.
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Algorithm 2 Proactive flow creation

Algorithm 3 Active flow creation

Input: G,0
1: for (s,d) in O do
2:  path < shortest_path(s,d)

3. inst < create_open flow_instructions(path)

4:  for v in path do

5 if FT(v,t) < C, then

6: if d is connected to v then

7: out_port < inst[v, d]

8 else

9: out_port < inst[v,v+1] {v+1 is the next hop}

10: end if

11: action + forward_to(d, out_port)

12: match < MT(s,d)

13: opo < create_open flow(out_port, match,
action)

14: send(opo, v)

15: end if

16:  end for

17: end for

The algorithm is executed during initialization of the net-
work. It creates OpenFlow rules for each pair source and
destination (s,d) of the set of endpoints O (lines 1-17) using a
shortest_path(e, e) function, that return the shortest path be-
tween s and d (line 2). Afterward, a dictionary of instructions
is generated to configure the flows for each OpenFlow switch
(line 3) with the function create_open flow_instructions(e).
Once the controller has the information about the path and
the set of instructions, it sends OpenFlow messages for every
OpenFlow switch of the path (lines 4-16).

In line 5, it is verified whether the OpenFlow switch has
the capacity to install a new flow. Then it is also checked if
d is connected to the current selected switch v (line 6). If
it is the case, the inst dictionary returns the port where d is
connected, otherwise the port of the next hop of the path. With
that all the information for create a flow, an opo OpenFlow
OFPT_FLOW _MOD packet is sent to the OpenFlow switch v
to install the rule with the match pattern, action and output
port information for a new flow (lines 12-14). The process
of flow creation continues until all the endpoints have rules
installed into the OpenFlow network.

C. Active flow creation

The algorithm for active flow creation has similarities
with the reactive and proactive flow creation. The difference
between active and reactive is that in active algorithm all
OpenFlow Switches receive OpenFlow rules at once, instead of
the reactive algorithm which requires each OpenFlow Switch,
individually, communicate with the controller to create the
new flow. Also, it is important to highlight the difference
between active and proactive. Active does not create rules in
advance. It waits for the packet from source to destination
arrive into one OpenFlow Switch. Then, the switch sent an
OpenFlow message to the controller that process and compute
the path from source to destination for that particular packet.

Input: opi,G,0
1: s« get_src(opi, G)
2: d + get_dst(opi, G)
3. if (s,d) in O then
4 path + shortest_path(s,d)
5. inst < create_open flow_instructions(path)
6: for v in path do
7 if FT(v,t) < C, then
8 if d is connected to v then
9 out_port + instv, d|

10: else

11 out_port < inst[v,v+1] {v+1 is the next hop}

12: end if

13: action + forward_to(d, out_port)

14: match < MT(s,d)

15: opo <+ create_open flow(out_port, match,
action)

16: send(opo,v)

17: end if

18:  end for

19: end if

Afterward, the controller sent to all switches in the path new
OpenFlow messages instructing them to create the new flow.
Therefore, the active flow creation algorithm is a mix of
reactive and proactive approaches.

Algorithm 3 describes the active flow creation. The lines 1
and 2 extract the information from source s and destination
d of the opi, OpenFlow packet input event. This information
is used to discover if the pair (s,d) is one of the endpoints
inside the set O. Afterwards, lines 4-18 are used to create the
flow for each OpenFlow switch in the path between source and
destination, in the same way of the proactive flow creation.

D. Numerical analysis

This subsection analysis the aforementioned algorithms. In
the first moment, we derive an analytic model to calculate the
number of update messages (signaling packets). Subsequently,
it is presented the numerical evaluation of the memory utiliza-
tion.

The reactive creation requires the OpenFlow switch to send
and receive control information to the SDN controller. Because
of it, the number of signaling messages is 2n, where n is
the number of the next hop element in network flow path
P(s,d). To the active flow creation, the first packet of the
flow is sent to the controller. The controller decides the set
of OpenFlow switches that belong to the flow path between
source and destination of the packet. Then, each switch in this
path receives one control packet for creation of the new flow.
Considering the first message received by the controller, the
exact number of signaling messages are n + 1, where n is
the number of the switches in the path P(s,d). Finally, for
proactive strategy all rules are created in advance for each
OpenFlow switch, which requires n signaling messages.

With regard to analytical modeling, the OpenFlow switch
memory required to install the flows inside the OpenFlow
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network, the memory utilization is proportional to the number
of flows in a specific moment in time of the network for
reactive and active algorithms. And the quantity of flows is
related to the number of endpoints in a particular moment of
time, or O(t). However, for the proactive approach, it creates
all possible flows in advance, the utilization of memory has a
fix consumption that depends on the number of endpoints to be
connected, or O (set of endpoints). Therefore, for reactive and
active algorithms requires at most the same memory utilization
of the proactive algorithm, ||O(¢)|| < ||O]|.

Considering d the number of default OpenFlow rules re-
quired to operate the OpenFlow network (e.g. rules to send the
packet to the controller for treatment of a missing matching
event), v number of switches in the OpenFlow topology, and
path(e,e) a function that generates a path from source to
destination. The generalization of the memory utilization for
asymmetric traffic network paths is given by:

o)
U(t)=dxv+ Z (||path(sre, dst)|| + ||path(dst, src)||)

(sre,dst)

When the network traffic follows symmetric paths inside
an OpenFlow network, or in other words, all packets from
source to destination also travel back through the same path,
the memory utilization can be simplified to:

o)
Ut)=d*xv+2 Z ||path(sre, dst)||

(sre,dst)

IV. PERFORMANCE EVALUATION

A. Virtual Environment

To investigate the three flow creation algorithms, two com-
puters were used. The first computer was a dedicated machine
with Ubuntu 16.04 LTS, 8 GB of RAM and 8 CPU core with
a clock of 2.20 GHz, and it was used to be the controller.
The second computer has a 3 GB of RAM machine, with
CPU clock of 2.4 GHz and Ubuntu version 14.04.4 LTS, and
it executed the Mininet [12] for the network emulation envi-
ronment. A physical Ethernet cable of 100Mbps in crossover
mode connected the two computers.

B. Case study - Abilene topology

A realistic topology is adopted to evaluate the three strate-
gies. The topology was extracted from Internet Topology Zoo'
dataset [13]. The 2005" Abilene topology was selected to
apply the experiments. Figure 1 depicts the Abilene topology
representation. This topology has 11 nodes and 14 links and
was reproduced inside the Mininet emulation environment.

The 2005° Abilene topology was used to investigated the
effect of signaling overhead for reactive and active approaches.
The metrics trip time and memory utilization were investigated
based on the percentage of endpoints connected in the network.

'An ongoing project that collects network topologies information from
around the world.

Seattle

Sun

Kansas [Ci

Los Angeles

Houston

Fig. 1. The representation of Abilene topology.
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Fig. 2. The trip time of the first packet to create OpenFlow rules.

1) Trip time: it is defined as the time for the first packet
travels the path from a source to the destination, and also in-
cludes the time for creation OpenFlow rules in every switches
that belongs to that path. The goal here is to analyze the impact
of signaling overhead into the trip time of the first packet that
creates a flow. For this purpose, the experiments used Internet
Control Message Protocol (ICMP) packets from an endpoint
(a host source) to another endpoint (a host destination). To
avoid additional latency during the experiments, caused by
Address Resolution Protocol (ARP) resolution, we guaranteed
that hosts already had discovered all other hosts, and then they
did have information about the MAC addresses of each other.

The experiments consisted of making one host to send an
ICMP packet to another host n hops away. The longest path
size in Abilene topology is n = 11 hops, where one OpenFlow
switch is visited at least once. After the measurement of the
trip time was done, the experiment waits for the timeout of
the flow to be reachable and repeats the process. For the three
algorithms, it was collected more than 30 times the value of the
trip time between endpoints, computed the average trip time,
and applied the confidence interval with 95%. The results are
presented in Figure 2.

2) Memory utilization: It was randomly selected a certain
percentage of the available hosts (endpoints) and measured
the number of rules installed into the OpenFlow Switches.
Because the number of endpoints depends on a particular
time of the network, the experiments were repeated 300 times
for each percentage of endpoints in use. Afterward, it was
measured the average of the number of rules installed and
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estimated the confidence interval with 95%. The results are
plotted in Figure 3. The reactive and active strategies are statis-
tical equivalent when considering the percentage of endpoints
connected, and them are only equals to proactive strategy when
all (100%) endpoints are required to be connected.

V. DISCUSSION

Considering the signaling requirements to install the Open-
Flow rules, Figure 2 indicates that reactive and active algo-
rithms increase the latency for the first packet of a flow. The
reactive algorithm is more critical than the active approach
when the number of hops crossed by the packet increases
because the reactive algorithm uses the controller for flow cre-
ation intensively, as indicated and predicted by our numerical
analysis of the number of signaling messages. Furthermore,
the proactive algorithm keeps the trip time of the first packet
minimal, because when a packet arrived into one of the
OpenFlow Switches, it has already installed the rules for that
traffic flow.

With regard to memory utilization, Figure 3 presents the
results for the number of flows entries used for a given
percentage of connected hosts in the topology adopted. As
expected, the proactive algorithm requires high values of
switches memory utilization to keep the endpoints full con-
nected, even if there are no network traffic for a given rule.
Hence, proactive strategy can not be adopted to connect all
endpoints when a network operator is dealing with a medium
or large sized network, because it is not feasible to install all
possible flows between endpoints inside the data plane.

One drawback of the reactive and active flow creation
algorithms is the duration of time the rule has to be inside
an OpenFlow switch. To avoid rules that are no longer useful,
the authors of [9] investigated the values for the timeout in
an OpenFlow network, and they suggested that a dynamic
policy has to be adopted to choose the proper timeout value.
This decision has to include the current memory utilization,
flow state, network traffic, controller capacity and data plane
element location [9], [14], [15]. The memory limitation of the
OpenFlow switches impose a network management challenge,
and the memory consumption for reactive and active strategies

depends on the number of elements that are being connected
in the network for a given instant of time.

VI. CONCLUSION

Based on the achieved results, the proactive solution is
more indicated for the treatment of flows that requires low
latency (for example, real time traffic), for a few number
of endpoints (memory limitation) or when the traffic flow is
previously known. The reactive and active algorithms reduce
the utilization of memory when compared with the proactive
approach, since they can dynamically adapt to network traffic,
but are signaling intensive, which could consume a lot of the
SDN controller resources (e.g. CPU). Moreover, the active
algorithm requires less time for flow creation than the reactive
approach.
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