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Abstract— Quantum key distribution allows two parties to
generate a shared cryptographic key of bits such that an eaves-
dropper is not able to obtain significant information about the key
without being detected. In protocols based on the transmission
of coherent states, the error rate, the key rate generation, and
the system security depend on the source states used. In here, we
show that quantum homodyne tomography using discretization of
the measurements into histogram bin can be used as an estimator
to analyze the aforementioned source states without losing too
much information.

Keywords— Quantum key distribution, Coherent states, Esti-
mator.

I. INTRODUCTION

Quantum information technology has advanced to the
point where Quantum Key Distribution (QKD) and rudi-
mentary quantum computers are commercially available [1],
[2], [3], [4]. Quantum computation and quantum internet
using telecommunications band, in particular, have achieve a
milestone with the demonstration of a telecom-band CNOT
gate [7] and the improvement of the storage time of a telecom-
compatible quantum memory [8].

QKD is a modern form of trusted communication, which in
principle allows a secure transmission of a message between a
sender (Alice) and a receiver (Bob). The two parties establish a
secure key by transmitting quantum states through an insecure
channel. Any attack realized by an eavesdropper (Eve) disturbs
the transmitted quantum state and can be detected [5], [6].
QKD schemes using single photons or pairs of entangled
photons are highly secure [9]. However, single photons or
pairs of photons can be easily absorbed, limiting the key
rate generation and operational distance of these schemes.
The use of higher intensity signals is an obvious alternative
to circumvent these limitations, and most importantly, it also
ensures that any eavesdropping will be detectable [10], [11],
[12].

The safety of a quantum key distribution protocol depends
on the fact that any attempt to eavesdrop on the quantum
channel generates errors in the transmission. For a given
error rate, the system itself and the eavesdropping strategy
determine the amount of information that may have leaked to
the eavesdropper. In protocols based on the transmission of
coherent states, the error rate, the key rate generation, and the
system security depend on the source states used. In general,
it is necessary to generate the source states α eiϕ, where α is
assumed to be real and the phases take one of four possible
values, 0, π/2, π, 3π/2. Consequently, precise reconstruction
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and diagnostic tools to estimate quantum states [13], [14], [15],
[16], [17] are fundamental.

In the quantum homodyne tomography considered here,
measurements are performed on each member of a collection
of source states prepared in the same state. The idea is to
estimate the source states from the experimental measurements
results. The estimation can be done using a range of different
methods. We used Maximum Likelihood Estimation (MLE),
that finds among all possible candidate states, the one which
maximizes the probability of obtaining the experimental data
set. For the likelihood maximization, we propose the use of an
algorithm with interactions of the RρR algorithm followed by
iterations of a regularized gradient ascent algorithm (RGA).

A homodyne measurement generates a continuous value. In
general, discretization of data is not necessary, but it can save
time in the reconstruction algorithm due to the reduction of
the number of data. We showed here that quantum homodyne
tomography using discretization of the measurements into
histogram bin can be used as a powerful tool to estimate
coherent states sources for QKD.

II. DESCRIPTION OF THE ESTIMATOR

To estimate a coherent state source of a QKD scheme
we need N quantum systems, each of them prepared in the
coherent state described by a density matrix ρtrue. We perform
N experimental trials and in each trial i we measure the field
quadrature of one of the systems at some phase θi of a local
oscillator. If we measure a quadrature value xi, for a given
phase θi, the resulting data will be {(θi, xi)|i = 1, . . . , N}.

For a certain candidate density matrix ρ, the probability
of obtaining outcome xi, when measuring with phase θi, is
given by Born’s rule: Tr(ρΠi), where Πi = Π(xi|θi) is the
positive-operator-valued measure (POVM) element associated
with the outcome of the i-th measurement. Given the data, the
likelihood of a candidate density matrix ρ is

L(ρ) =
N∏
i=1

Tr(Πiρ). (1)

MLE searches for the density matrix that maximizes the
likelihood in Eq. (1). The same density matrix that maximizes
the likelihood also maximizes the “log-likelihood”, given by

L(ρ) = lnL(ρ) =
N∑
i=1

ln[Tr(Πiρ)]. (2)

Since this function is concave and convergence to a unique
solution will be achieved by most iterative optimization meth-
ods, we usually choose to maximize the log-likelihood.
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We propose the use of an algorithm for likelihood max-
imization that begins with interactions of the RρR algo-
rithm [19] followed by iterations of a regularized gradient
ascent algorithm (RGA). The change is due to an expressive
slow-down of the RρR algorithm after about (n + 1)2/4
iterations. In the RGA, ρ(k+1) is parametrized as

ρ(k+1) =

(√
ρ(k) +A

)(√
ρ(k) +A†

)
Tr

[(√
ρ(k) +A

)(√
ρ(k) +A†

)] , (3)

where ρ(k) is the density found by the last interaction of RρR,
and A may be any complex matrix of the same dimensions
as ρ. The density matrix ρ(k+1) is a physical density matrix
for any chosen A. The matrix A maximizes the quadratic
approximation of the log-likelihood subject to Tr(AA†) ≤ u,
where u is a positive number adjusted by the algorithm,
such that the log-likelihood increases with each iteration. The
stopping criterion L(ρML) − L(ρ(k)) ≤ 0.2, where L(ρML)
is the maximum of the log-likelihood, is used to halt the
interactions [18].

III. RESULTS

Our numerical experiments simulate single mode optical
homodyne measurements of coherent states. Each considered
state is represented by a density matrix ρtrue in an n photon
basis. To better simulate realistic experiments, these pure
coherent states are subject to a 0.05 photon loss before
measurement. We also include photon detector inefficiency by
considering detectors with efficiency η ∼ 0.9. To guarantee
random samples of homodyne measurement results, we use
rejection sampling from the distribution given by P (x|θ) [20].

The homodyne measurements are performed at m phases,
where m divides the upper-half-circle (between 0 and π)
evenly. We measure N/m times at each phase, where N is
the total number of measurements. We use N = 20, 000 e
m = 20 in our simulations. In each case studied here, we
simulate 100 tomography experiments, making 100 density
matrix estimates. The graphs show the arithmetic mean of the
100 fidelities of the reconstructed states. The error bars show
the standard deviation of the 100 fidelities.

Fig. 1 shows the average fidelity as a function of the
bin width used to discretize the data when reconstructing a
coherent state with α = 1 and ϕ = 0 in the expression of
the source states, α eiϕ. Fig. 2 shows the average fidelity as
a function of the bin width for a coherent state with α = 0.1
and ϕ = π/2. In both cases, the state is reconstructed in
a Hilbert space truncated at n = 10 photons, and every
measurement outcome in a given bin has been associated with
the measurement operator for the quadrature value at the center
of that bin.

As expected, the highest fidelities occur when we do not
discretize the available data. We also see in Figs. 1 and 2
that smaller bin widths result in higher fidelities. However,
when compared to the raw data, the smallest bin widths tested
result in a fidelity loss of only 0.002. The loss in fidelity when
using the largest bin widths was of about 0.23. As we can
see, the choice of bin width is essential in guaranteeing a

smaller loss of information. Ideally, when we use discretization
of the measurement results, we should seek a method to
determine an optimal bin width. On the other hand, when
using discretization, we get much faster fidelity estimates. For
example, the slowest reconstruction when using discretization
is 20 times faster than reconstructing using all the data.
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Fig. 1. Average fidelity as a function of the bin width for a coherent state
with α = 1 and ϕ = 0. The Hilbert space is truncated at n = 10 photons.
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Fig. 2. Average fidelity as a function of the bin width for a coherent state
with α = 0.1 and ϕ = π/2. The Hilbert space is truncated at n = 10
photons.

IV. CONCLUSIONS

We have shown that quantum homodyne tomography using
histograms can be used as efficient estimator to analyze
coherent-state-based QKD source states without loosing too
much information. We plan, in a future work, to study different
strategies to choose optimal quadrature bin widths and to
analyze the impact of integrating the measurement operators
along the length of the bin.
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