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Estimation of Directed Information to Processes
Assuming Continuous Values with CTW Algorithm

Juliana M. de Assis and Francisco M. de Assis

Abstract— This paper introduces the use of a directed infor-
mation estimator for discrete-valued processes to continuous-
valued processes by previously discretizing the continuous-valued
processes according to three different and generally applicable
methods. The directed information estimator uses context tree
weighting algorithm (CTW). The three discretization methods are
called equidistant, equipopulated and symbolic methods. Simu-
lated results indicate that faster and more conservative results
are found by using few discretization levels with equipopulated
method.

Keywords— Directed information, Causality, Estimation, Dis-
cretization.

I. INTRODUCTION

Introduced by Massey and Marko [1] [2], directed infor-
mation (DI) is a model-free measure of causality. It has been
recently used in different fields to estimate causal relation-
ships. DI estimation revealed influences in stock markets in
economy [3]. It also has been used to determine neuronal
connections [4] [5] and to determine epileptic onset zone [6]
in neuroscience. DI has been used to determine internet access
influences [7] and to gene networks influences [8], among
other examples in systems presenting causal links.

Despite the fact that DI correctly identifies causal rela-
tionships, DI estimation is not trivial. Initially, DI was well
established among processes assuming discrete values, and it
is estimated for finite-alphabet stationary ergodic processes,
either parametrically as in [5] or using the celebrated context
tree weighting algorithm (CTW) [9] as in [3], with Jiao
estimators.

Malladi et al. present extensions of DI definition from
discrete-time, discrete-valued processes to discrete-time,
continuous-valued processes [6]. Malladi et al. also introduce
almost surely convergent estimators for DI between stationary
ergodic continuous-valued Markovian processes, using either
a model-based approach or a data-driven approach.

In this article, we investigate the use of one of Jiao esti-
mators to estimate DI between stationary continuous-valued
processes by previously discretizing the continuous values.
The discretization is performed and analyzed with three dif-
ferent methods. The paper is organized as follows. Section II
establishes notation and terminology. Section III introduces
causality and DI definitions. Section IV introduces briefly
CTW algorithm as also the chosen Jiao estimator used in
the simulations performed here. Section IV also presents the
three methods used to discretize the continuous data. Section
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V presents the performed simulations and comparisons among
the three methods. Finally, section VI concludes the paper.

II. NOTATION AND TERMINOLOGY

In this paper, we denote random variables by uppercase
letters, stochastic processes by uppercase bold letters. Sub-
scripts usually denote the outcome’s position in a sequence,
for example, Xn generally indicates the nth output of the
process X . Subscripts also denote the first index considered
in a sequence. Superscripts on a random variable denote
finite length sequences of this random variable, for example,
XN

2 = {X2, X3, . . . , XN}. Throughout this paper, log is base
2, and E(X) indicates the expected value of X .

III. DIRECTED INFORMATION

One important concept used in this article is the concept
of causality. The sense of causality throughout this paper is
the same given by Norbert Wiener [10], according to which
a random process X causes a random process Y if the
knowledge of the past of X improves the prediction of future
values of Y.

DI between finite continuous-valued time series XN and
Y N is defined as [6]:

I(XN → Y N ) = h(Y N )− h(Y N ||XN ) (1)

where

h(Y N ) =

N∑
n=1

h(Yn|Y n−1) (2)

is differential entropy of the sequence Y N [11] and

h(Y N ||XN ) =
N∑
n=1

h(Yn|Y n−1Xn) (3)

is the causally conditioned differential entropy of sequence
Y N causally conditioned on sequence XN .

When dealing with time series or stochastic processes, one
is usually interested in how DI increases as the sequence
grows, or in its rate - directed information per letter. When
we mention finite time series, the DI rate is defined as [12]:

IN (X → Y ) =
1

N
I(XN → Y N ). (4)

Moreover, when we mention stochastic processes, the DI
rate is defined in the limit as N →∞, when the limit exists:

I∞(X → Y ) = lim
N→∞

IN (X → Y ). (5)
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DI exhibits some properties when the involved processes are
discrete-valued, which can be extended to the case when the
involved processes are continuous-valued. One property is DI
is always non-negative [6]. Another property is that, differently
than mutual information, DI is generally not symmetric, that is,
I(XN → Y N ) 6= I(Y N → XN ) in general. This constitutes
one important characteristic, since causality is usually directed,
and requires also a directed measure.

Here we also present a property derived for discrete-valued
processes which can easily be extended to continuous-valued
processes: DI is upper bounded by mutual information [12]. To
observe this fact, we write the definition of mutual information
between two finite time series XN and Y N and we rewrite
DI definition to explicit the apparently slight difference among
them two:

I(XN ;Y N ) =
N∑
n=1

[h(Y n|Y n−1)− h(Y n|Y n−1XN )]

(6)

I(XN → Y N ) =
N∑
n=1

[h(Y n|Y n−1)− h(Y n|Y n−1Xn)]

(7)

which is the superscript N or n on the X conditioning
in the second entropy term inside the sum. Since con-
ditioning always reduces entropy (even in the differential
case [11]), h(Y n|Y n−1XN ) is always less than or equal to
h(Y n|Y n−1Xn), then I(XN ;Y N ) is always greater than or
equal to I(XN → Y N ).

IV. ESTIMATION OF DIRECTED INFORMATION

In this section, we present the DI estimators analyzed in this
paper for continuous processes. These estimators have essen-
tially two major steps in their application: firstly they discretize
the data and secondly they apply one of Jiao estimators [3] to
the discretized processes. Jiao estimators estimate DI between
two finite-alphabet stationary ergodic processes and use CTW
algorithm. In the following subsection, we describe the three
proposed methods of discretization.

A. Discretization Methods

Discretization methods are often used in the estimation of
mutual information between two continuous-valued random
variables [13]. Even though the discretization may lead to
biased estimates [14], they are very appealing due to its
simplicity.

As already mentioned, in this paper we analyze three meth-
ods of discretization. The first method consists in segment-
ing the support of the processes in L equidistant segments,
according to Euclidean distance, from the minimum value
to maximum value. The second method also segments the
support of the processes, but in L equipopulated segments.
The third method is inspired in reference [15]. It consists in
ordering k consecutive values of the time series, representing
this transition order by one number that represents one of k!
possible permutations. For example, consider the time series:

X7 = [0.5 0.75 − 0.1 − 0.23 0.05 0.52 0.49]

TABLE I
PERMUTATION VALUES

Transition Discretized value
012 1
021 2
102 3
120 4
201 5
210 6

If we choose k = 2, we have the corresponding transitions:

[01 10 10 01 01 10].

Labelling the symbol 01 as 1 and the symbol 10 as 2, we
obtain the following discretized sequence (beginning in index
n = 2):

X̃7
2 = [1 2 2 1 1 2].

On the other hand, if we choose k = 3 we have the
corresponding transitions:

[120 210 102 012 021].

Labelling each transition as in table I, we obtain the
following discretized sequence (beginning in index n = 3):

X̃7
3 = [4 6 3 1 2].

Thus, in this third discretization method, if we choose
parameter k, we discretize the continuous process in L = k!
symbols.

B. Jiao Estimator

As mentioned in section I, Jiao estimators use the CTW al-
gorithm. So, in order to understand Jiao estimators, we briefly
explain CTW algorithm. CTW assumes that we have a finite
memory tree source to build a context tree with depth D, here
considered larger than the memory of the source. The context
tree has nodes, each one labelled by the string s, which is also
a context, of at most D symbols, with the counts of how many
times s preceded each of the symbols. The next procedure
is to attribute weighted probabilities to the nodes based on
these counts. The weighted probabilities Pw are based on the
Krichevsky-Trofimov (KT) estimated probabilities, Pe. There
is a sequential formula to compute Pe for each node of the
context tree of a source emitting M symbols, where bi is the
counting of symbol i, i ∈ {0, . . . ,M − 1} [9], [3], [4]:

Pe(b0, b1, . . . bi−1, bi + 1, bi+1, . . . , bM−1) =

bi + 1/2

b0 + · · ·+ bi + · · ·+ bM−1 +M/2
×

Pe(b0, b1, . . . bi−1, bi, bi+1, . . . , bM−1).

The root node is denoted by λ and Pλw is the universal
probability assignment by CTW. References [9], [3], [4] show
examples of CTW implementation applied to sequences.

Jiao et al. [3] present four slightly different estimators of
DI based in CTW algorithm. All four of them present almost
sure consistency under some assumptions of the underlying
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probability distribution of the involved stochastic processes.
The first two of them present the advantage of established rates
of convergence. The other two of them present the advantage
of always being non-negative. In this paper, we chose to use
one of these last two algorithms (“E4” estimator).

V. RESULTS

In this section we perform the DI calculation of one baseline
example where we have a stochastic continuous-valued process
X causing another stochastic continuous-valued process Y.
Additionally, we perform many subsequent simulations using
the three proposed discretization methods and the chosen DI
Jiao estimator.

A. Baseline Example

The “driving” process X is an i.i.d. Gaussian stochastic
process, with zero mean and unit variance (denoted by σ2

X ),
while the “response” process Y is given according to the
equation:

Yn = βXn−2 + Zn (8)

where β is a coupling parameter and Zn is also an i.i.d.
Gaussian stochastic process with zero mean and unit variance
(denoted by σ2

Z). We may evaluate the true DI rate value in
this baseline example by evaluating the terms h(Y N ||XN ) and
h(Y N ) separately:

1

N
h(Y N ||XN ) =

1

N

N∑
n=1

h(Yn|Y n−1Xn)

=
1

N

N∑
n=1

h(βXn−2 + Zn|Y n−1Xn)

=
1

N

N∑
n=1

h(βXn−2 + Zn|Xn−2)

=
1

N

N∑
n=1

h(Zn)

=
1

2
log(2πeσ2

Z)

=
1

2
log(2πe),

and

1

N
h(Y N ) =

1

N

N∑
n=1

h(Yn|Y n−1)

= h(Yn),

because Y does not depend on its own past.
In order to compute h(Yn), since its an zero mean Gaussian

random variable, we need to evaluate its variance:

var(Yn) = E(βXn−2 + Zn)
2

= E(β2X2
n−2 + 2βXn−2Zn + Z2

n)

= β2E(X2
n−2) + σ2

Z

= β2σ2
X + σ2

Z = β2 + 1.

Thus,

1

N
h(Y N ) =

1

2
log(2πe(1 + β2)), and

IN (X → Y ) =
1

2
log(1 + β2).

B. Simulation

With the purpose of evaluating the estimation methods
proposed, we simulated the continuous-valued stochastic pro-
cesses. For each case of estimation, that is:

• Equidistant discretization followed by application of Jiao
estimator or;

• Equipopulated discretization followed by application of
Jiao estimator or;

• Symbolic discretization followed by application of Jiao
estimator;

we simulated 50 trials of X, Y and Z with duration N = 105,
context tree depth parameter D = 2, for each parameter β =
{0, 0.2, 0.4, 0.6, 0.8, 1}. For all proposed estimation methods,
we selected L = 2 discretization levels or L = 6 discretization
levels. Additionally, we performed simulation with L = 4
discretization levels for the equidistant and equipopulated
dicretization methods. The symbolic method does not allow
a discrezation of L = 4 levels because there is no integer k
such that k! = 4.

Fig. 1, 2 and 3 show the results for L = 2. Fig. 4 and 5
show the results for L = 6. Fig. 6 and 7 show the remaining
results for L = 4. In all figures, red dotted lines indicate the
analytical DI rate value, while continuous blue lines indicate
the median DI rate estimates and dashed blue lines indicate
from 10% to 90% of the estimates.
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Fig. 1. Equidistant method, L = 2
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XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP
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Fig. 2. Equipopulated method, L = 2
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Fig. 3. Symbolic method, L = 2
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Fig. 4. Equipopulated method, L = 6
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Fig. 5. Symbolic method, L = 6
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Fig. 6. Equidistant method, L = 4
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Fig. 7. Equipopulated method, L = 4

We highlight some interesting features of the proposed
estimation methods. Firstly, concerning the estimates values,
we observed that for L = 2, all three methods have sim-
ilar performance. They always underestimate DI values and
present very small variance, as shown by dashed lines. On
the other hand, for L = 6, we observed that equidistant and
equipopulated methods do not generally capture the causality
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XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP

for all β parameter values, except for equipopulated method
with β = 1 (results not shown for equidistant method and L =
6 due to space limitations, but estimates were approximately
0 for all β values). This may happen because the context
tree probabilities become smaller and smaller when using
greater alphabet (L). Unfortunately, the symbolic method
overestimates DI for small β values while underestimates DI
for large β values. However, DI rate estimates in this case
follow the behaviour of the analytical DI rate values. For
the cases where L = 4, we observed that the equipopulated
method outperforms the equidistant method, but it did not
capture the causality for small β values (β = 0.2, 0.4) and
still underestimates DI, although the underestimation for large
β values is less than the underestimation with the equidistant
method.

Secondly, concerning the time of the estimation processes,
all discretization methods consume little time, with an incre-
ment in symbolic method. Nevertheless, the DI rate estimation
using Jiao estimator is more time consuming. Each trial takes
approximately 35s for L = 2 or L = 4 levels (alphabet taking
2 or 4 values), while each trial takes approximately 50s for
L = 6 levels (alphabet taking 6 values). We ran these estimates
on a computer with a 2.67GHz processor.

With the view to evaluate the presence of spurious detection
of causality between processes that presented no causality
relation, we also simulated 50 trials of two independent i.i.d.
Gaussian processes with duration N = 105 and estimated DI
rates according to the three discretization methods. In this case,
IN (XN → Y N ) = 0. Again, we set the parameter of context
tree depth D = 2, and discretized in L = 2, 4 or 6 levels. Table
II shows the estimates medians of DI for these simulations

TABLE II
DI RATE ESTIMATE MEDIANS ACCORDING TO THE DISCRETIZATION

METHOD AND LEVELS (L), WHEN ANALYTICAL VALUE

IN (XN → Y N ) = 0.

Discretization method / Levels L = 2 L = 4 L = 6
Equidistant ≈ 10−5 ≈ 10−4 ≈ 10−3

Equipopulated ≈ 10−5 ≈ 10−4 ≈ 10−3

Symbolic ≈ 10−3 - ≈ 10−1

Apparently, there is a tendency that the estimates medians
present a small increase when we use larger alphabets of
discretization. However, the only case with rather large DI rate
estimates, despite the fact that there was no causality indeed
between the processes, was when using symbolic discretization
with L = 6.

We should also remark that there are many other possible
ways to discretize the continuous-valued processes. For in-
stance, in reference [3], stock market causality is estimated
by discretizing continuous values in three values. Value -1
indicated that the stock market went down in one day by more
than 0.8%, value 1 indicated that stock market went up in
one day by more than 0.8%, while value 0 indicated that the
absolute change is less than 0.8%. However, we thought that
this method has the disadvantage of a necessity to choose an
appropriate value for the absolute change (the settled 0.8% in
reference [3]). Further works may evaluate a mean to use this

method in a proper and general manner.

VI. CONCLUSION

In this paper we performed simulations to evaluate the
DI rate estimation between continuous-valued processes by
using an universal DI estimator using CTW for discrete-
valued processes (here called Jiao estimator). To perform the
estimation, we used previously three different discretization
methods. We observed that, for L = 2 discretization levels,
all three methods perform similarly. For L = 4 discretization
levels, the equipopulated method outperforms the equidistant
method. Finally, for L = 6 discretization levels, we may state
that the symbolic method best captures the general dynamics
as we increased the coupling parameter β. However, in general
cases where we desire faster and conservative estimates using
Jiao estimator to detect causality between continuous-valued
processes, we recommend the use of equipopulated discretiza-
tion method with a small number of levels (L = {2, 3, 4}).
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