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Analysis of the Correntropy-Based Criterion for

Blind Equalization with Precoded Sources
Vinı́cius A. de Oliveira, Denis G. Fantinato, Rafael Ferrari, Romis Attux, Levy Boccato

Abstract— Temporally structured sources may arise in blind
equalization as the result of coding schemes. In this context,

a promising approach involves the use of correntropy, which
is capable of exploring both the statistical information and the
temporal structure of the signals. In this work, we perform a
detailed analysis of the correntropy-based criterion for equaliza-
tion, giving a special attention to the effect of the adjustable
parameters as well as to the comparison with the analytical
correntropy measure, whose formal derivation is another con-
tribution of this work. The experimental results indicate the
attainable performance and the influence of the main parameters.

Keywords— Adaptive filtering, Blind channel equalization,
Information-theoretic learning, Correntropy.

I. INTRODUCTION

The field of unsupervised signal processing deals with the

challenge of extracting signal(s) of interest from a collection

of measurements that usually contain distortions, such as those

resulting from interferences between the signals and/or from

the presence of noise, having at disposal a minimum amount

of information regarding the original signal(s) and the specific

characteristics of the process that generates the distortions.

An example of such challenge arises in the context of the

blind equalization problem, in which the objective is to design

a filter at the receiver, named equalizer, that attempts to cancel

the noxious effects of the channel used for the transmission,

especially the so-called intersymbol interference (ISI), thus

enabling the recovery of the transmitted information.

Two fundamental results establish sufficient conditions for

perfect equalization: the Benveniste-Goursat-Ruget (BGR) and

the Shalvi-Weinstein (SW) theorems [1]. The BGR theorem

proves that if the probability density function (PDF) of the

signal at the equalizer output is equal to the PDF of the source

signal, then the channel has been equalized. On the other

hand, the SW theorem demonstrates that it is not necessary to

resort to the PDFs of the involved signals: only a few higher-

order statistical moments need to match in order to achieve

the equalization. Based on both theorems, several criteria and

algorithms have been proposed for blind equalization [1], [2].

However, when the source signal presents a temporal struc-

ture of dependency, i.e., it does not correspond to a process

with independent and identically distributed (i.i.d.) samples,

the aforementioned conditions are not directly applicable, and
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many of the existing blind techniques experience a significant

degradation in performance [3]. This type of scenario may

emerge due to the natural characteristics of the involved signal,

e.g., in the context of speech, audio and video signals, or even

due to the use of coding schemes at the transmitter, which

purposely introduce redundancies in the signal prior to its

transmission.

Interestingly, the area of information-theoretic learning

(ITL) provides a measure, known as correntropy, which serves

as the basis for a blind equalization criterion that represents

the state-of-the-art for the treatment and analysis of temporally

dependent signals [4], [5]. The correntropy can be seen as a

generalized correlation function, since it computes a similarity

measure in a kernel feature space between a signal and its

delayed version as a function of the delay, but with the

advantage that several higher-order moments of the considered

random variable are implicitly exploited due to the use of a

kernel function [5].

The criterion proposed by [5] corresponds to minimizing

the squared error between the values of the correntropy of

the source signal, assumed to be known, and the correntropy

observed at the equalizer output considering a limited number

of delays. Hence, the temporal structure of the source is effec-

tively incorporated in the design process of the equalizer, and

the statistical information of the involved signals is implicitly

forced to be equal due to the properties of the correntropy.

Despite of these attractive features, the effective use of

correntropy in blind equalization requires the definition of

some parameters, such as the kernel size and the number

of lags (time delays) that must match, whose influence on

the attainable performance of the equalizer is not completely

clear [6]. Additionally, the correntropy at the equalizer output

needs to be estimated and, thus, the number of samples used

in such estimation process represents another important factor.

In view of these facts, in this work we perform an analysis

of the correntropy-based criterion for blind equalization con-

sidering the presence of temporally dependent sources, which

are generated through the use of a linear precoding stage. In

this context, we formally derive the analytical expression of the

correntropy associated with the signal generated at the output

of a finite impulse response (FIR) equalizer, thus enabling

the investigation of the corresponding criterion in its ideal

form. A second contribution of this work refers to an analysis

of the role played by each parameter of the correntropy-

based criterion, considering both its theoretical and estimated

versions, and, finally, to the subsequent comparative study

between the performances associated with each equalizer.
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II. PROBLEM STATEMENT AND CORRENTROPY

The scenario of the channel equalization problem that will

be treated in this work is depicted in Fig. 1.

Channel

H(z)

Equalizer

w

s(n) y(n)
Precoder

P(z)

u(n) r(n)

Fig. 1. Block diagram of the channel equalization problem.

Differently from the classical approach [1], we consider that

there exists a precoder P (z), which receives an i.i.d. signal

u(n), which belongs to the BPSK modulation, and produces a

source signal s(n) with a temporal structure, i.e., a sequence of

statistically dependent samples [5]. The effect of the precoder

can be related to symbolic coding shemes, such as channel

coding with linear blocks or convolutional codes [7].

The channel is represented by its coefficient vector h =
[h0 . . . hD]T , where [·]T stands for matrix transposition, and

is responsible for introducing the ISI. The equalizer is also a

FIR filter with coefficients given by w = [w0 w1 . . . wM ]T ,

and generates an output signal y(n) according to the following

expression:

y(n) = wT r(n), (1)

where r(n) = [r(n) . . . r(n−M)]T is the received signal

vector, with r(n) = h(n) ∗ s(n) and ∗ represents the discrete-

time convolution. The objective is to adapt w in order that

y(n) becomes a correct estimate of a transmitted symbol s(n−
d), being allowed an equalization delay (d) [1]. The criterion

used in the adaptation process shall be based on the concept

of correntropy, which is defined in the following section.

A. Definition of Correntropy

An emblematic entity in the context of unsupervised ITL is

the measure called correntropy, which can be seen as a gener-

alized correlation function [4], [5]. Besides taking into account

the statistical distribution of signals, the correntropy is able

to encompass their temporal structure, which is particularly

useful when dealing with signals with statistical dependence.

It may be defined as

vY (m) =

∫

D

κσ (v) fYn,Yn−m
(v) dv

= EYn,Yn−m
[κσ (v)] ,

(2)

where κ(·) denotes a positive definite kernel function,

fYn,Yn−m
(·) represents the joint probability density function

(PDF) of Yn and Yn−m, E [·] is the expectation operator, σ is

the kernel size and m is the time delay between samples. As

usual in the ITL field, a Gaussian kernel function is considered,

and a sample mean approximates the statistical expectation in

Eq. (2), resulting in

v̂Y (m) =
1

L−m+ 1

L
∑

n=m

Gσ2(y(n)− y(n−m)), (3)

being L the window length or the number of samples and

Gσ2 (y(i)− y(j)) =
1√
2πσ

exp

(−|y(i)− y(j)|2
2σ2

)

, (4)

the Gaussian kernel with kernel size σ.

B. The Correntropy-Based Criterion for Equalization

An interesting criterion for blind equalization is the match-

ing between the correntropies of the source and of the equal-

ized signal, through the minimization of the following cost

function [5]:

Jcorr(w) =

B
∑

m=1

(vS(m)− vY (m))
2
, (5)

where vS is the correntropy of the source, vY is the corren-

tropy of the equalizer output and B is the number of lags

being considered. In this case, the temporal structure of the

source is extracted by the correntropy function vS(m), which

contains the higher order statistics (HOS) information that

can be compared with the correntropy associated with the

equalized signal, vY (m).
Since the precoder is assumed to be known, it is usually

considered that vS(m) can be analytically obtained, while

vY (m) is replaced by its estimate v̂Y (m), given by Eq. (3).

However, we will also address the case in which vY (m)
is analytically computed, which certainly allows a deeper

understanding of the criterion behavior, and its dependence on

the adjustable parameters. Additionally, we may also establish

a comparison between the analytical and estimated versions of

the criterion, as well as between the corresponding optimum

equalizers in terms of the capability of reducing the ISI. In the

following, we present the formal derivation of the correntropy

associated with the equalizer output signal.

C. Analytical Correntropy

When the source is discrete, the correntropy can be ana-

lytically computed from a probability mass function (PMF)

associated with a filtered signal according to the methodology

proposed in the following. Consider that the precoder P (z) is

combined with a time differentiating system with transfer func-

tion Q(z) = 1−1z−m, which results in P ′(z) = P (z)Q(z) =
P (z)(1 − 1z−m). The system P ′(z), besides applying the

source precoding, also considers the difference between m-

delayed time samples, which is a crucial comparison term in

correntropy when Gaussian kernels are considered, as can be

seen in Eq. (3). The filtering process then yields:

s′(n) = p′Tu(n). (6)

If the PMF associated with s′(n) is

pS′(v) =
∑

i∈A
S′

P (v = aS′(i))δ(v − aS′(i)), (7)

where AS′ is the alphabet of all possible occurrences of S′,

aS′(i) is the i-th symbol ∈ AS′ and P (v = aS′(i)) is the

probability of v = aS′(i), then the correntropy can be simply

calculated as

vS(m) =
∑

i∈AS′

pS′(aS′(i))Gσ2 (aS′(i)) . (8)

We consider, for example, the case in which u(n) is a BPSK

modulated signal. If the vector p′ is of length Mp′ + 1, then

there are 2Mp′+1 possible occurrences for u(n) in Eq. (6)
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(all possible permutations of {+1,−1} in a vector of length

2Mp′+1), each of them with probability 1/2Mp′+1. In this case,

the i-th state of S′, aS′(i), is simply the output given by Eq. (6)

for the i-th possible occurrence of u(n), with probability

P (v = aS′(i)) = 1/2Mp′
+1.

Interestingly, assuming a noiseless scenario, the analytical

computation of the correntropy associated with the equalizer

output can be easily obtained: by defining the combined sys-

tem G′(z) = P (z)H(z)W (z)(1−1z−m), the produced signal

is given by y′(n) = g′Tu(n), whose PMF will be pY ′(v),
which can be written in a very similar manner to Eq. (7), with

AY′ being the alphabet of all possible occurrences of Y ′. So,

having pY ′(v) in hand, the correntropy vY (m) can be exactly

determined with the aid of Eq. (8).

In view of this, there emerge two possibilities for the present

analysis: (i) from a theoretical perspective, the case in which

both the correntropy of the source and of the equalizer output

are analytically computed, as defined on Eq. (5); and (ii) from

a practical perspective, the case in which the correntropy of the

equalizer output is estimated from samples (Eq. (3)), resulting

on the estimated cost:

Ĵcorr(w) =

B
∑

m=1

(vS(m)− v̂Y (m))
2
. (9)

In the former case, the parameters are the maximum number

of delays B and the kernel size σ, whereas, in the second

case, the number of samples L is also a parameter to be

adjusted. Naturally, a suitable choice of the parameters will

depend on the distribution of the signals, the scenario at

hand and other relationships between the parameters, but, as

we intend to show, the parameters values that yield the best

approximation of the analytical correntropy through the use

of the estimator may not be the ones associated with the best

performance of the equalizer. In the following, we perform

a set of computational simulations that will contribute to a

better understanding of the correntropy-based criterion and the

adjustment of its parameters.

III. SIMULATION RESULTS

In order to investigate the relationships between the ana-

lytical and the estimated correntropy-based costs, Jcorr(w)
and Ĵcorr(w), respectively, we first compare the cost surfaces

in a scenario with a two-tap filter as the equalizer. Next, by

varying the kernel size σ and the number of samples L, the

performances of the global solutions are compared in terms of

the ISI measure, defined as

ISIdB = 10 log10

(

∑Mc

i=0
|ci|2

)

−maxj |cj |2

maxj |cj |2
, (10)

where c = [c0 c1 . . . cLc
]T is the combined channel-equalizer

impulse response (with transfer function C(z) = H(z)W (z)).
Hence, the objective will be to minimize the ISI. Finally, the

performance in more complex scenarios will be considered,

where the influence of the chosen maximum number of delays

B will also be investigated.

In all experiments concerning Ĵcorr(w), the performance

analysis – in terms of ISI – considers the average of the

results obtained in NE independent simulations. Additionally,

the precoder used in all scenarios has the transfer function

P (z) = 1− 0.5z−1 + 0.3z−1.

The search for the global optimum of the cost functions

shall be performed by the metaheuristic called Differential

Evolution (DE), which is an efficient technique to explore the

search space and to avoid convergence to local optima [8]. Its

main feature is the fact that the candidate solutions are adapted

by mechanisms that exploit the information about the search

space that is available in the current population, instead of

using conventional operators based on random perturbations

(for more details, please refer to [8]). The DE parameters are

the population size NP , the step size F , the crossover rate

CR and the maximum number of iterations IT , which will be

adjusted according to each scenario at hand.

A. Cost Surfaces Analysis

In the first scenario, the channel is a minimum-phase system

with transfer function given by H(z) = 1+0.5z−1. An equal-

izer with two coefficients w = [w0 w1]
T is adopted, whose

weights will be varied from −2 to 2 to obtain the contours

of the costs Jcorr(w) and Ĵcorr(w). The DE parameters were

chosen to be NP = 100, F = 0.5, CR = 0.9 and IT = 100
iterations.

Firstly, we analyze the effect of the kernel size σ on the

surfaces. We fixed B = 2 for both analytical and estimated

costs, using L = 500 samples for the latter. Then, by varying

the equalizer weights, we obtained the contours of Jcorr(w)
and Ĵcorr(w) for the kernel sizes of σ = 0.2 and σ = 0.9,

as shown in Figs. 2(a) and 2(b), respectively. Additionally,

we also exhibit the solutions found by the DE, which are

represented by asterisks (*) for the analytical cost and by solid

dots (.) for the estimated cost function, considering NE = 100
independent experiments. It is possible to observe that, in

both cases, the contours of the analytical and the estimated

costs are, to a certain extent, similar, but the modification in

the kernel size causes a significant difference on the surface

shape: for σ = 0.2, there are several local minima, while

for σ = 0.9, there exist only global minima. Additionally, in

Fig. (2(a)), we can notice that Ĵcorr offers solutions that are

actually close local minima, instead of the global minima, of

the analytical cost function, which suggests that low kernel

size values may cause larger estimation errors. Indeed, when

the kernel size is increased to 0.9, Fig. 2(b), the solutions

become more concentrated at the vicinity of the analytical

global minima.

However, increasing the kernel size leads to a degradation

in the equalizer performance, as we can see in Tab. I, which

presents the ISI values attained by the solutions associated

with the analytical and estimated cost functions. So, even

though Ĵcorr provides solutions more similar to the analytical

one for σ = 0.9, the equalizer is not the best we could obtain

with this type of criterion, as a better performance is achieved

for a smaller kernel with Jcorr.

Proceeding with the same scenario, we now analyze the

influence of the kernel size and of the number of samples in the

performance associated with each version of the correntropy-

based criterion. Firstly, we vary σ from 0.05 to 1 in steps of
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Fig. 2. Contours of the analytical and estimated cost function.

TABLE I

ISI (IN DB) ASSOCIATED WITH Jcorr AND Ĵcorr OPTIMUM SOLUTIONS.

Cost Function σ = 0.2 σ = 0.9

Estimated −3.2789 −3.4204

Analytical −10.5570 −3.6109

0.05, considering for the estimated cost a total of L = 5000
samples. For each value of σ, we show in Fig. 3 the ISI value

associated with the best solution offered by the analytical cost

function, which was found by the DE algorithm, as well as

the average ISI obtained by the solutions of the estimated cost

function. The shaded area is the ISI range taking the standard

deviation obtained by all the solutions found for Ĵcorr. For

comparison purposes, we also exhibit the ISI performance of

the Wiener solution considering the best equalization delay [2].

It is possible to notice in Fig. 3 that the ISI values associated

with Jcorr(w) may significantly differ from those of Ĵcorr(w)
for σ ≤ 0.6. For σ > 0.6, the performances are similar,

suggesting that the solutions of the analytical and estimated

cases are close, as we verified in Fig. 2(b), but their ISI

levels are higher. It is also worth mentioning that the best ISI

performance is attained for σ = 0.2 in both cases. However,

as depicted in Fig. 2(a), the solutions associated with the

estimated correntropy-based cost may vary significantly, as can

also be seen in Fig. 3.

Fig. 3. ISI as a function of the kernel size σ.

In particular, the fact that the ISI variance associated with

Ĵcorr is higher for low σ values suggests that the estimation

may not be accurate enough with the chosen number of

samples L. Hence, we now analyze the effect of L in the

estimation by varying it from 1000 to 40000 in steps of

1000. During the analysis, we kept B = 2 and σ = 0.2
fixed for Jcorr and Ĵcorr. The resulting ISI performances are

illustrated in Fig. 4, where we also displayed the ISI range of

the estimated case and the ISI obtained by the Wiener solution.

It is possible to notice that as L is increased, the average ISI

Fig. 4. ISI values as a function of the number of samples L.

obtained with Ĵcorr gets closer to the ISI value associated

with the analytical cost function. Moreover, the ISI range tends

to decrease for larger L, which means that the solutions are

varying less. Notwithstanding, the enormous amount of data

necessary to obtain more accurate correntropy estimates can

be of major concern, depending on the specific application. On

the other hand, the use of larger kernel sizes would require a

smaller number of samples for an adequate estimation, but it

would also lead to poorer solutions, as observed in Fig. 3.
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Finally, we briefly verify the impact of the number of lags

B for Jcorr and Ĵcorr when σ = 0.2 and L = 20000
samples. Figure 5 displays the source correntropy function

(the correntropy target values) for time delays m from 1 to

10, along with the equalizer output correntropy function for

both the analytical and estimated versions (mean of 100 Monte

Carlo simulations), considering B = 2 (upper) and B = 10
(bottom). The ISI performances for both delays are displayed

in Tab. II. As can be observed in Fig. 5 for B = 2 (upper),
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Fig. 5. Correntropy profile as a function of the delay m.

TABLE II

ISI (IN DB) ASSOCIATED WITH Ĵcorr AND Jcorr OPTIMUM SOLUTIONS.

Delays Estimated Analytical

B = 2 −7.2661 −10.5571

B = 10 −5.5405 −13.0102

both the analytical and the estimated correntropy functions

at the equalizer output match that of the source for m = 1
and m = 2, which are precisely the delays the criterion

effectively attempts to match. However, for the subsequent

correntropy lags m, this does not hold and the solutions of

estimated cost performed poorer due to the estimation errors,

as exhibited in Tab. II. When B is increased to 10 (Fig. 5

bottom), the correntropy profiles are not perfectly matched

with that of the source for both analytical and estimated cases,

but, even so, the analytical cost solution points toward a lower

ISI level, while the estimated correntropy loses performance,

most probably due to the cumulative estimation errors along

the several delays. In this sense, a small number of delays B
seems to be more suitable to minimize the estimation errors.

B. More Complex Channel/Equalizer

In the following, we consider a higher dimensional scenario

with a 5-tap equalizer as the filtering structure in order to

support the generality of our observations. Now, the source

signal is distorted by a three-tap channel with transfer function

H(z) = 1 + 0.8z−1 − 0.25z−2. The kernel size for both Jcorr
and Ĵcorr was σ = 0.6. In the case of Ĵcorr, N = 105 samples

were used to obtain the output correntropy. In all experiments,

the DE algorithm was used with the following parameters:

NP = 500, IT = 500, F = 0.5 and CR = 0.9. For this

analysis, we considered B = 4 lags in the computation of

both criteria. The performances in terms of ISI are shown in

Tab. III for an average of NE = 20 simulations.

TABLE III

ISI ASSOCIATED WITH Jcorr AND Ĵcorr OPTIMUM SOLUTIONS.

Estimated Analytical Wiener

ISI (dB) −8.8961 −14.6835 −30.6349

Two important remarks can be drawn from Tab. III: (i) the

average performance associated with Ĵcorr is inferior to that

of Jcorr, which, in view of the previous results, suggests that

other minima have been found instead of a solution close

to the analytical; (ii) the blind correntropy solution for the

equalizer does not reach the same performance level of the

Wiener (supervised) solution.

IV. CONCLUSIONS

In this work, we performed an analysis of the correntropy-

based criterion for blind equalization with temporally de-

pendent sources. For this purpose, we derived the analytical

expression of the correntropy at the equalizer output, which

can be considered one of the contributions of this work, and

we investigated the influence of the main parameters on the

correntropy-based criterion, considering both its analytical and

estimated versions. From the simulation results, we verified

that correntropy is more sensitive to small kernel sizes, which

is also the situation that may lead to better results and to

higher discrepancies between the analytical and estimated

correntropy-based criterion. In this case, the number of sam-

ples can be (considerably) increased to improve the estimation

quality. Using more delays, additional information is provided,

as observed in the performance of the analytical correntropy,

but, for the estimated correntropy, a cumulative estimation

error is perceived in this case, causing a performance loss.

For future works, we intend to analyze the precoder adjust-

ment aiming at reducing the ISI, and also to study the behavior

of correntropy-based criterion in scenarios with the presence

of noise and with other types of source signals.
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