
XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBRT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP

Verification of Magnitude and Phase Responses
in Fixed-Point Digital Filters

Daniel P. M. de Mello1, Mauro L. de Freitas2, Lucas C. Cordeiro1,
Waldir S. S. Júnior1, Iury V. de Bessa1, Eddie B. L. Filho1,3 and Laurent Clavier2

1Universidade Federal do Amazonas (UFAM), Manaus-AM, Brasil
2Univ. Lille, CNRS, ISEN, Univ. Valenciennes, UMR 8520, IEMN, 59000 Lille, France

3TPV Technology, Manaus-AM, Brasil
Email: dani-dmello@hotmail.com, m.lopesdefreitas@ed.univ-lille1.fr,

lucascordeiro@ufam.edu.br, waldirjr@ufam.edu.br, iurybessa@ufam.edu.br,
eddie.filho@tpv-tech.com, laurent.clavier@iemn.univ-lille1.fr

Abstract—In the digital signal processing (DSP) area, one of
the most important tasks is digital filter design. Currently, this
procedure is performed with the aid of computational tools, which
generally assume filter coefficients represented with floating-point
arithmetic. Nonetheless, during the implementation phase, which
is often done in digital signal processors or field programmable
gate arrays, the representation of the obtained coefficients can
be carried out through integer or fixed-point arithmetic, which
often results in unexpected behavior or even unstable filters. The
present work addresses this issue and proposes a verification
methodology based on the digital-system verifier (DSVerifier),
with the goal of checking fixed-point digital filters w.r.t. im-
plementation aspects. In particular, DSVerifier checks whether
the number of bits used in coefficient representation will result
in a filter with the same features specified during the design
phase. Experimental results show that errors regarding frequency
response and overflow are likely to be identified with the proposed
methodology, which thus improves overall system’s reliability.

I. INTRODUCTION

Digital Filters with finite impulse response (FIR) or infinite
impulse response (IIR) are used in different areas, such as
digital signal processing (DSP), control systems, telecommu-
nications, medical instrumentation, and consumer electronics.
In general, such applications vary from simple frequency
selection and adaptive filters to equalizers and filter banks,
whose goal is to modify the characteristics of a certain signal,
in accordance with pre-established requisites.

Digital filter design follows an abundant mathematical the-
ory, both in frequency and time domains, and is usually
realized with tools such as MATLAB [1], which normally
assume fixed- or floating-point precision. Nonetheless, there
can be a great disparity between a filter design and its practical
implementation. For instance, many projects are implemented
in digital signal processors or field programmable gate arrays
(FPGAs), which may employ fixed-point arithmetic (with
lower cost and complexity), whereas associated designs usu-
ally assume floating-point precision [15].

This difference has the potential of generating undesirable
effects regarding a filter’s frequency response, both in phase
and magnitude, in addition to problems as overflow and insta-
bility [5]. Such behavior is due to quantization errors caused
by a more constrained precision, which result in coefficients
that are different from the ones originally designed. As result,

one may argue about the effectiveness of digital filters and the
number of bits needed for their representation, in such a way
that design parameters are satisfied [16]. This paper presents
a verification methodology for digital filters with fixed-point
implementation, based on the Efficient SMT-Based Context-
Bounded Model Checker (ESBMC), which employs Bounded
Model Checking (BMC) techniques and Satisfiability Modulo
Theories (SMT) [3], [4]. Such an approach indicates, accord-
ing to previously defined parameters,if the chosen number of
bits is sufficient and does not lead to unexpected errors or
behaviors. The main advantage of this approach, over other
filter analysis techniques [5], [8], is that model checking tools
can provide precise information on how to reproduce errors
(for instance, system input values) through counterexamples.

In order to apply the proposed methodology to digital
filter verification, Digital System Verifier (DSVerifier) [17], a
front-end tool for the verification of different types of digital
systems, was used. DSVerifier is based on state-of-the-art
bounded model checkers that support the C language and em-
ploy solvers for boolean satisfiability and satisfiability modulo
theories. The present scheme was developed and integrated
into DSVerifier [16], [17], because the latter was unable to
support the verification of filter-specific properties, such as
magnitude and phase, prior to this work. Many practical digital
filters were used for verification, with the goal to validate them
against real designs. As result, such a verifier, together with
traditional design tools, can provide a complete digital filter
synthesizing scheme, according to application conditions. In-
deed, the present approach is effective in verifying magnitude
and phase responses, which provides an analysis deeply based
on DSP theoryThe performed experiments are based on a set
of publicly available benchmarks2.

The remainder of this work is organized as follows. Section
II presents verification schemes available in literature, high-
lighting its main characteristics, while in Section III, the BMC
technique is presented. Then, in Section IV, the proposed
method is described, and Section V presents the simulations
results. Finally, the conclusions are set out in Section VI.

2benchmarks available on http://www.esbmc.org/benchmarks/sbrt2017.zip

1184

XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBRT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP

II. RELATED WORK

The application of tools that implement the BMC technique,
regarding software verification, is becoming quite popular,
mainly due to the advent of sophisticated SMT solvers,
which are constructed based on efficient satisfiability solvers
(SAT) [9]. Previously published studies related to SMT-based
BMC, for software, handle the problem of verifying ANSI-C
programs that use bit operations, fixed-point and floating-point
arithmetic, comparisons and pointers arithmetic [3]; however,
there are few evidences of studies that address the verification
of properties related to digital filters implementation, in ANSI-
C, especially when assuming arbitrary word-length. One of
such studies was previously conducted by Freitas et al. [2],
where digital filter properties, such as overflow, magnitude
and stability, were verified by employing ESBMC. Those
results served as main inspiration for the present work, whose
proposal is to further extend and reproduce its verified proper-
ties, while supporting them on DSVerifier. Currently, this new
implementation allows passband-filter verification.

Akbarpour and Tahar [10], [11] presented an approach for
error detection in digital-filter design, which is based on a
high-order logic (HOL) theorem solver. The authors describe
valuation functions that find the real values of a digital fil-
ter’s output, through fixed- and floating-point representations,
aiming to define an error. The latter represents the difference
between the found values, through this valuation function, and
the output corresponding to design specifications.

Recently, Cox, Sankaranarayanan and Chang [12] intro-
duced a new approach that uses bit-precise analysis for ver-
ifying of digital filter implementations, in fixed-point. This
approach is based on the BMC technique and employs SMT
solvers for checking verification conditions, which are gener-
ated in the digital-filter design phase. The authors show that
such an approach is more efficient and produces fewer false
alarms, if compared with those that use real arithmetic solvers

Nonetheless, the mentioned studies do not address intrinsic
filters characteristics, such as errors or modifications related
to poles, zeros, and frequency response. In that sense, Abreu
et al. proposed a new methodology for the verification of
digital filters, employing DSVerifier [16]. The authors verified
digital systems properties, such as limit-cycle and overflow,
and checked output errors and time constraints, based on
discrete-time models implemented in C.

The present article extends the approach proposed by Cox
et al. [12] and Abreu et al. [16], by including new digital filter
properties, such as magnitude and phase responses, which is
closely related to DSP theory. In addition, it applies DSVerifier
to the verification of a more diverse set of benchmarks,
including different classes of filters (e.g., passband filters).

One may also find a fixed-point implementation of a digital
filter by directly designing it and optimizing the number of
bits used in the fixed-point format [6], [7]; however, tradi-
tional design methodologies do not address fragility issues,
i.e., the filter dynamics sensitivity w.r.t. the implementation
issues, e.g., FWL effects and round-offs. Even a correct filter-
design might lose performance and stability due to those.
The method proposed here addresses this problem, since it
is able to represent all dynamic and rounding variations as
non-deterministic variables, which will produce a (transition)
system that models all the possible states a system could reach.

III. THE BMC TECHNIQUE

With ESBMC, a program under analysis is modeled by a
state transition system, which is generated from a program
control-flow graph (CFG) [13] that is automatically created
during verification. A node in a CFG represents an assignment
(deterministic or nondeterministic) or a conditional expression,
while an edge represents a change in a program’s flow.

A state transition system M = (S, T, S0) is an abstract
machine, which consists in a state set S, where S0 ⊆ S
represents a initial state set and T ⊆ S × S is the transition
relation. A state s ∈ S consists of values of a program counter
pc and all system variables. An initial state s0 assigns a
program’s initial location in a CFG to the pc. We identify
each transition γ(si, si+1) ∈ T between two states si and
si+1, with a logical formula γ(si, si+1), which captures the
constraints on corresponding values of a program counter and
system variables. Given a transition system M , a property φ,
and a bound k, ESBMC [4] unfolds a system k times and
transforms the associated result into a verification condition
ψ, in such a way that ψ is satisfiable if and only if φ contains
a counterexample with length smaller or equal to k [3]. Thus,
the BMC technique problem is formulated as follows

ψk = I(s0) ∧
k∨
i=o

i−1∧
j=0

(γ(sj , sj+1) ∧ φ(si)), (1)

where φ is a property, I is a set of the initial states in M ,
and γ(sj , sj+1) is the state transition function of M , between
steps j and j + 1. Thus, I(s0) ∧

∧i−1
j=0 γ(sj , sj+1) represents

the execution of M for i times. Eq. (1) will be satisfied if,
and only if, for each i ≤ k, there is a reachable state where
φ is violated. If Eq. (1) is satisfiable, then ESBMC shows a
counterexample, defining which variable values are needed to
lead to the related error. The counterexample for a property φ
is a state sequence s0, s1, ..., sk with s0 ∈ S0 and γ(si, si+1)
, for 0 ≤ i < k. If Eq. (1) is unsatisfiable, one can conclude
that no error state is reachable within k steps or less.

IV. THE NEW VERIFICATION METHODOLOGY

In general, fixed-point implementations use standard regis-
ters to store the inputs and outputs along adders, multipliers,
and delays; however, results of those elements might exceed
the limits of the allocated variables or generate values different
than what was expected, due to coefficients accuracy or
associated number of bits. In conclusion, it is possible that
results differ from those specified or even that a filter becomes
unstable. Finally, the proposed verification methodology is
split into three main parts: magnitude and phase verification,
poles and zeros stability, and overflow verification.

A. Magnitude and phase verification
Changes in coefficients, due to fixed-point quantization,

modify responses in magnitude and phase [11] as shown in
Fig. 1.

Here, the input of the proposed verification system is
composed by filter coefficients, in floating-point, which must
be analyzed according to the adopted conditions, such as
passband, cut-off frequency, and rejection band, as well as
the gains in each region and the amount of bits used for its
representation in fixed-point.

1185

XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBRT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
a

g
n

it
u

d
e

 (
d

B
)

Magnitude Response (dB)

Fig. 1. Magnitude response of an IIR Chebyshev filter with order 12: the
blue curve represents the projected answer and the green one the response
with fixed-point, containing one sign bit and 7 and 6 bits for the integer and
fractional parts, respectively.

Given that N is the number of points of the Discrete-Time
Fourier Transform (DTFT) [14], h[n] is the filter impulse
response, and Hk is the k-th component of it’s sampled
equivalent in frequency domain, we have that

Hk =

N−1∑
n=0

h(n)e−j(2π/N)kn. (2)

In addition, suppose that ωp, ωr, and ωc are the digital
frequencies of passband, stopband and cutoff, respectively,
and Ap, Ar, and Ac are the gains that will be checked.
We assumed the following assertions to verify magnitude and
phase properties for lowpass and highpass filters:

Ilp mag ⇔
[(
|Hk| > Ap

)
∧
(
0 ≤ 2πk

N
≤ ωp

)]
∨[(

|Hk| < Ac
)
∧
(

2πk
N

= ωc
)]
∨[(

|Hk| < Ar
)
∧
(
ωr ≤ 2πk

N
≤ π

)]
, (3)

Ihp mag ⇔
[(
|Hk| < Ar

)
∧
(
0 ≤ 2πk

N
≤ ωr

)]
∨[(

|Hk| > Ac
)
∧
(

2πk
N

= ωc
)]
∨[(

|Hk| > Ap
)
∧
(
ωp ≤ 2πk

N
≤ π

)]
(4)

and
Ilp phase,
Ihp phase

⇔ |^H(k)− ^Hfixed(k)| > threshold. (5)

In case of an assertion violation, an error is generated to
indicate that the chosen amount of bits is insufficient, taking
into account the initial design restrictions.

B. Poles and zeros verification
the Jury’s algorithm is used to check stability in the z-

domain, for a given characteristic polynomial of the form

S(z) = a0z
N + a1z

N−1 + ...aN−1z + aN = 0, a0 6= 0. (6)

In particular, the Jury’s stability test is already explained in
the control system literature [19]. This study, however, limits
itself to explain the SMT encoding of the Jury’s criteria. For

the stability test procedure, the following Jury’s matrix M =
[mij](2N−2)×N is built from S(z) coefficients:

M =


V (0)

V (1)

...
V (N−2)

 , (7)

where V (k) = [v
(k)
ij]2×N , such that

v
(0)
ij =

{
aj−1, if i = 1

v
(0)
(1)(N−j+1)

, if i = 2
and (8)

v
(k)
ij =


0, if j > n− k

v
(k−1)
1j − v(k−1)

2j · v
(k−1)
11

v
(k−1)
21

, if j ≤ n− k and i = 1

v
(k)
(1)(N−j+1)

, if j ≤ n− k and i = 2

, (9)

where k ∈ Z, such that 0 < k < N − 2. S(z) is the
characteristic polynomial of a stable system, if and only if
the following four propositions hold:

• R1: S(1) > 0;
• R2: (−1)NS(−1) > 0;
• R3: |a0| < aN ;
• R4: m11 > 0 ⇐⇒ m31 ∧m51 ∧ · · · ∧m(2N−3)(1).

The stability property is then encoded by creating a con-
straint using the fixed size bit-vector theory, which is typically
supported by state-of-the-art SMT solvers [18]:

φstability ⇐⇒ (R1 ∧R2 ∧R3 ∧R4), (10)

where the literal φstability represents the validity of the stabil-
ity condition. In particular, an SMT-solver checks whether the
Jury’s criteria hold for characteristic polynomial coefficients.

C. Overflow verification
The third part tackles overflow verification after coefficient

quantization, which would be considered infeasible without
computational tools. Additions, subtractions, multiplications,
and divisions can be approximately implemented with fixed-
point representations, so that values are constrained according
to the available number of bits; if this condition is violated,
then an overflow has occurred. In order to better understand
that, our work describes overflow by saturation and overflow
by wrap-around.

Definition 1. (Saturation) Saturation occurs when values outside a
bit range are represented by minimum or maximum values.

Despite the easy in finding those limits, it would be difficult
to know which input will lead to saturation.

Definition 2. (Wrap-around) Wrapping around consists in attribut-
ing minimum values when the maximum limit is reached and vice-
versa [12].

Overflow verification generates an array of nondeterministic
fixed-point numbers x̃[n], which represents a discrete input
signal and applies it to a filter’s difference equation h[n],
which was converted to fixed-point. The result is an array
describing the output y[n] at each step n of an input signal.
The length N of an input array, as well as the maximum and
minimum values of each input element are defined by users.
The internal realization of h[n] might also be selected by users.
All overflow check iterations are given by

Ioverflow ⇔
(
y[n] > Vmin

)
∧
(
y[n] 6 Vmax

)
, (11)

1186

XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBRT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP

where n varies from 0 to N and Vmin and Vmax are the
minimum and maximum values representable by a given fixed-
point bit format. The procedure used by DSVerifier to calculate
this interval is described in section V-A.

In oder to detect an error, a counterexample is generated,
which consists of the violated states, providing access to
inputs that generated the associated error, in a specific order,
as well as output values. This approach provides knowledge
about error conditions regarding overflow, allowing a designer
to look for an alternative implementation. Until the present
moment, DSVerifier does not support underflow verification.

V. EXPERIMENTS

This section consists in two parts. The adopted system
configuration is described in Subsection V-A, while Subsection
V-B summarizes our goals and Subsection V-C describes the
results obtained with DSVerifier1 [3], [4], [16], [17], regarding
filter magnitude and phase responses, as well as preexisting
functions for verifying stability and overflow.

A. System configuration and preparation for experimentation
Magnitude and phase verifications were split into two main

groups: one consisting of IIR and another of FIR filters.
Each set is divided into 3 categories: lowpass, highpass, and
bandpass, with three filters with low orders (2nd or 4th order),
and three with high orders (12th or 30th order), in each set,
with different cut-off frequencies. Three types of IIR filters
were used: Butterworth, Chebyshev, and Elliptic. For FIR
filters, types Equiripple, Hann Window, and Maximally Flat.

Altogether, 54 stable filters were created during the design
stage, with 18 FIR and 36 IIR, with a sample frequency
of 48kHz (commonly used in audio applications). All filter
transfer-functions were obtained with the Filter Design and
Analysis Tool application available in MATLAB [1] and then
encoded in a “.c” file.

Aiming to explore different theories employed by SMT [3]
solvers, non-integer numbers were encoded into two different
ways: in binary (when bit vector arithmetics is used) and also
in real representations (when using rational arithmetic). Fixed-
point representation was performed by dividing the number to
be represented between its integer part I , with m bits, and
its fractional one F , with n bits [15]. such an approach is
represented with tuple 〈I, F 〉, which can be encoded both in bit
vector and rational arithmetic and is interpreted as I + F/2n.
Thus, all associated represented values must be between the
maximum and minimum expected ones:

Vmax = 2m − 1/2n (12)

and
Vmin = −2m, (13)

with

Vmin ≤ vfixed ≤ Vmax. (14)

All experiments were conducted with an Intel Core i7-
2600 PC, with 3.40GHz of clock speed and 16GB RAM,
running 64-bits Ubuntu as operational system. The execution
duration of each verification was obtained with the Unix’s time
command.

1http://www.dsverifier.org

B. Experimental Goals
While creating our benchmark, we aimed at a variety of

filter parameters, such as order, frequency, and type, in such
a way that we were able to demonstrate the usefulness of our
method, in all sorts of situations. Some filters were defined
with an extremely short passband-interval, so that DSVerifier
was taken to the limit when trying to represent unrealistically
challenging situations.

C. Results
Table I summarizes verification results regarding phase and

magnitude, with the first letter in the identification name
indicating which filters are FIR and which ones are IIR. Filters
that contain “hp” are high-pass, while “lp” stands for low-
pass. The filter order is displayed as the number in each filter
identification name. Columns “CF”, “PF” and “SF” indicate,
respectively, the cut-frequency, the pass-frequency, and the
stop-frequency, in kHz, which were used when synthesizing
filters. Some of those frequencies were not used (indicated by
“NE”) in design specifications of certain filter types. “VTM”
stands for magnitude verification time, while “SM” stands for
magnitude verification status, which can be either Success-
ful (S), Passband fail (FP), Stopband fail (FS), or Cutoff-
frequency fail (FC). SP is the status for phase verification.
The phase status can be either Successful (S) or Fail (F).

FP represents the number of bits used for fixed-point repre-
sentation. The minimum gain, for passbands, is fixed in −1dB
for Eliptic filters, while the maximum gain for stopbands is
fixed in −80dB, for Eliptical and Chebychev filters. Those
specifications apply for both low-pass and high-pass filters.
Near identical criteria were used for band-pass filters, except
that now a pair of each region frequencies is needed for full
specification. All filters in Table V-C were verified considering
a fixed-representation tuple of 〈4, 10〉, except for second order
filters, where 〈1, 5〉 was used.

One may notice that verification procedures of low- and
high-pass filters with the same order occurred with largely
different elapsed times. That occurs because failures on the
frequency response might occur sooner for one filter and later
for another, regardless of order. Thus, DSVerifier (together
with an SMT solver) takes different amounts of time to find a
violation and provide the respective counterexample that leads
to that.

Results for magnitude verification regarding band-pass fil-
ters are included in Table II. It is worth noticing that instead
of a single frequency as specification, now a frequency pair is
used. The column “FP tuple” indicates the considered FWL
constriction. Poles and zeros verification procedures occurred
for IIR filters and the result is shown in Table III. “VT” stands
for verification time, in seconds, and “SPZ” represents the
status of a verification. Besides, results for filters with a cutoff-
frequency of 100Hz are interesting, since magnitude failures
were found for all IIR ones. Table IV presents results for
overflow verification, which indicates the efficacy regarding
detection of this type of error. All tested filters were IIR, which
were also used in Table I.

VI. CONCLUSION

The present work proposed a methodology for verifying dig-
ital filter design parameters through the BMC technique, which

1187

XXXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBRT2017, 3-6 DE SETEMBRO DE 2017, SÃO PEDRO, SP

TABLE I
MAGNITUDE AND PHASE VERIFICATION OF IIR AND FIR FILTERS.

IIR filters CF PF SF TVM (s) SM SP
ilp2 9.6 Na Na 5.25 S S
ihp2 9.6 Na Na 5.39 S S
ilp2EST 0.1 Na Na 207.34 FP F
ilp12 9.6 Na Na 17.07 S F
ihp12 9.6 Na Na 17.15 S F
ilp12EST 0.1 Na Na 423.56 FP F
ilp4C Na 9.6 Na 173.44 FP F
ihp4C Na 9.6 Na 162.24 FS S
ilp4ESTC Na 0.1 Na 163.70 FS F
ilp12C Na 9.6 Na 430.85 FS F
ihp12C Na 9.6 Na 432.66 FS S
ilp12ESTC Na 0.1 Na 523.98 FP F
ilp4E Na Na 9.6 161.44 FP S
ihp4E Na Na 9.6 164.64 FP F
ilp4ESTE Na Na 0.1 164.68 FS F
ilp12E Na Na 9.6 460.18 FP F
ihp12E Na Na 9.6 429.14 FP F
ilp12ESTE Na Na 0.1 455.35 FP F
fhp10 7.2 Na 9.6 14.63 S S
flp10 9.6 Na 9.6 1902.8 FC S
fhp30 9.6 Na 9.6 1164.9 S S
flp30 Na Na 9.6 41.02 S S
flp10EST 0.1 Na 0.1 14.95 S F
flp30EST Na Na 0.1 41.91 S S
fhp10Equi 9.6 Na 9.6 360.9 FS S
flp10Equi 9.6 Na 9.6 70.8 FP S
fhp30Equi 9.6 Na 9.6 1043.2 FP S
flp30Equi Na Na 9.6 1061.3 FS F
flp10ESTEqui 0.1 Na 0.1 363.59 FP F
flp30ESTEqui Na Na 0.1 1052.6 FP S
fhp10Hann 9.6 Na 9.6 361.84 FC F
flp10Hann Na Na 9.6 15.42 S S
fhp30Hann 9.6 Na 9.6 41.91 S S
flp30Hann 9.6 Na 9.6 40.25 S F
flp10ESTHann Na Na 0.1 15.36 S F
flp30ESTHann Na Na 0.1 41.22 S S

TABLE II
MAGNITUDE VERIFICATION OF IIR PASSBAND FILTERS.

IIR filters CF Pairs PF Pairs SF Pairs TVM (s) SM FP tuple
ipb2 7.2, 16.8 Na Na 106.46 FP <1,5>
ipb12 7.2, 16.8 Na Na 17.20 S <4,10>
ipb12EST 7.2, 7.32 Na Na 349.95 FP <4,10>
ipb4E Na 7.2, 16.8 Na 160.24 FP <4,10>
ipb12E Na 7.2, 16.8 Na 447.75 FP <4,10>
ipb12ESTE Na 7.2, 7.32 Na 438.95 FS <4,10>
ipb4C Na Na 7.2, 16.8 140.27 FP <4,10>
ipb12C Na Na 7.2, 16.8 564.95 FS <10,16>
ipb12ESTC Na Na 7.2, 7.92 445.73 FS <10,16>

TABLE III
STABILITY VERIFICATION OF IIR FILTERS.

IIR filters O FC (Hz) VT (s) SPZ FP tuple
hp12 12 9600 1.35 S <4,10>
hp12C 12 9600 1.35 S <4,10>
hp12E 12 9600 79.99 F <4,10>
hp2 2 9600 1.20 S <1,5>
hp4E 4 9600 1.52 S <4,10>
lp12 12 9600 1.35 S <4,10>
lp12C 12 9600 1.30 S <4,10>
lp12E 12 9600 79.83 F <4,10>
lp12ESTC 12 100 1.88 F <4,10>
lp12ESTE 12 100 79.94 F <4,10>
lp2 2 9600 1.16 S <1,5>
lp4E 4 9600 1.22 S <4,10>

TABLE IV
OVERFLOW VERIFICATION OF IIR FILTERS.

Filter Order VT (s) FP tuple Status
lp2 2 77.184 <1,5> S
hp2 2 90.034 <1,5> F
lp4E 4 185.945 <1,5> F
hp4E 4 184.254 <1,5> F

indicates if the number of bits used for coefficient and sample
representation changes previously specified characteristics.

During the present simulations, both IIR and FIR filters
were addressed, in order to ensure the outcome of real projects,
in different realizations and applications. Results show that
it is possible to detect low and medium order filters, with
moderate verification times. The main contributions of this
work are the incorporation of parameters related to filter design
theories, such as magnitude and phase responses and the
location of poles and zeros, which complement other tests,
such as overflow. Besides support for intrinsic filter properties
verification was added to DSVerifier tool. For future work, it
would be of interest to incorporate other filter parameters and
perform an automatic computation of the minimum number of
bits for a successful validation, for fixed-point.

REFERENCES

[1] Mathworks, Inc., “Matlab Getting Started Guide R2011b”, USA, 2011.
[2] M. de Freitas, M. Gadelha, W. da Silva Jr., E. de Lima Filho,

“Verificação de Propriedades de Filtros Digitais Implementados com
Aritmética de Ponto Fixo”, XXXI Brazilian Telecommunications Sym-
posium, pp. 1-4, 2013.

[3] L. Cordeiro, B. Fischer e J. M. Silva, “SMT-Based Bounded Model
Checking for Embedded ANSI-C Software”, IEEE Transactions on
Software Engineering (TSE), v. 38, n.4, pp. 957–974, 2012.

[4] L. Cordeiro e B. Fischer, “Verifying Multi-threaded Software using
SMT-based Context-Bounded Model Checking”. in Proc. Int. Conf. on
Software Engineering (ICSE), pp. 331–340, IEEE/ACM, 2011.

[5] A. Oppenheim, R. Schafer e J. Buck, “Discrete-time signal processing”,
Prentice-Hall, Inc., Ed. 2, 1999.

[6] Sung W, Kum KI (1995) Simulation-based word-length optimization
method for fixed- point digital signal processing systems. IEEE T
SIGNAL PROCES 43(12):30873090. DOI 10.1109/78.476465

[7] Carletta J, Veillette R, Krach F, Fang Z (2003) Determining appropriate
precisions for signals in fixed-point IIR filters. In: Proceedings of Design
Automation Conference, pp. 656661. DOI 10.1109/DAC.2003.1219100

[8] W. T. Padgett and D. V. Anderson, “Fixed-point signal processing”,
Synthesis Lectures on Signal Processing, vol. 4, no. 1, pp. 1–133, 2009.

[9] L. de Moura e N. Bjrner, “Z3: An efficient SMT solver”, in Proc. Int.
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), LNCS 4963, pp. 337–340, 2008.

[10] B. Akbarpour e S. Tahar: “Error Analysis of Digital Filters Using
Theorem Proving”. in Proc. Int. Conf. on Theorem Proving in Higher
Order Logics (TPHOLs), pp. 1–17, 2004.

[11] B. Akbarpour e S. Tahar. “Error analysis of digital filters using HOL
theorem proving”. Journal Applied Logic, v.5, n. 4, pp. 651–666, 2007.

[12] A. Cox, S. Sankaranarayanan, e Bor-Yuh E. Chang, “A bit too precise?
Bounded verification of quantized digital filters”, in Proc. Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pp. 33–47, 2012.

[13] S. S. Muchnick, “Advanced compiler design and implementation.”,
Morgan Kaufmann Publishers Inc., 1997.

[14] P. Diniz, E. Silva e S. Netto, “Processamento Digital de Sinais - Projeto
e Anlise de Sistemas”, Bookman Editora, 2002.

[15] I. Bessa, H. Ismail, L. Cordeiro, J. Chaves Filho, “Verification of
fixed-point digital controllers using direct and delta forms realizations”.
Design Autom. for Emb. Sys. 20(2): 95-126 (2016).

[16] R. Abreu, M. Gadelha, L. Cordeiro, E. de Lima Filho, W. da Silva Jr.:
Bounded model checking for fixed-point digital filters. Journal of the
Brazilian Computer Society. v. 22, n. 1, pp. 1–20, May 2016.

[17] H. Ismail, I. Bessa, L. Cordeiro, E. de Lima Filho, J. Chaves Filho:
DSVerifier: A Bounded Model Checking Tool for Digital Systems. in
Proc. Int. Conf. on Symposium on Model Checking of Software (SPIN):
pp. 126-131, 2015.

[18] L. Keel and S. Bhattacharyya, Stability margins and digital implemen-
tation of controllers, in Proc. Amer. Control Conf., vol. 5, 1998, pp.
28522856.

[19] I. Bessa, H. Ismail, R. Palhares, L. Cordeiro, and J.Chaves Filho
“Non-Fragile Stability Verification of Digital Control Systems with
Uncertainty”, in IEEE TRANSACTIONS ON COMPUTERS, VOL. 66,
NO. 3, 2017.

1188

