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Abstract— Diagonal loading imparts robustness to adaptive
beamformers. With it, the algorithm improves both its capacity
of sidelobes attenuation and the signal-to-interference-plus-noise-
ratio (SINR). However, setting the appropriate loading factor
γ value is not a straightforward task as it is dependent on
various parameters. Therefore, this paper aims to establish its
behavior related to changes in certain parameters - i.e., number
of antennas, number of interferers, noise power and direction-of-
arrival (DOA) uncertainty. This way, the value that gives suitable
SINR results can be established.

Keywords— Adaptive beamforming, uniform linear array
(ULA), sample-matrix inversion (SMI), loaded SMI (LSMI),
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and loading factor.

I. INTRODUCTION

Throughout the years, antenna arrays have been a relevant
research topic in various applications [1]: radar; sonar; wireless
communications; etc. Several approaches have been developed
to increase its performance in various scenarios [2]. Different
methods for DOA estimation - DS, Capon and MUSIC [3], [4]
- have been proposed. When the direction-of-interest (DOI) of
the signal-of-interest (SOI) is known, the simplest method is
to aim the array via delay-and-sum (DS) method.

Adaptive beamforming is a versatile approach to detect
and estimate the SOI [1], [5], [6]. It is used when the
environment variables - e.g., noise, direction-of-arrival (DOA),
array imperfections, etc. - are unknown or constantly changing.
The main approach in adaptive beamforming is to maximize
the beamformer output SINR. However, typical applications
include the SOI in their training snapshots, which can severely
degrade the SINR performance [1] as the SOI component can
be mistakenly interpreted as an interferer by the algorithm.
Another problem that may degrade the SINR performance is
the DOA estimation error of the SOI. For this problem, many
solutions have been proposed: convex quadratic constraints
[7]; Bayesian approach [8]; and uncertainty set based method
[9]. All the previous methods belong to the class of diagonal
loading method in robust beamforming.

One popular approach when the DOI is known is the
minimum variance distortionless response (MVDR) [5], [10],
[11]. Two methods based on MVDR and on the samples
captured by the array are used: the sample matrix inversion
(SMI); and the loaded SMI (LSMI). The former uses the
inverted interference-plus-noise (INR) covariance matrix; the
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latter just loads this matrix diagonal with a constant loading
factor. This factor improves the algorithm robustness and its
value has been empirically suggested in previous works [1],
[12]. In order to understand its influence on the beamformer
performance, a further analysis is presented.

This paper is divided as follows: Section II gives a synthesis
of concepts involving adaptive beamforming; Section III ana-
lyzes the loading factor (γ) for the LSMI algorithm; Section
IV compares the DS, SMI and LSMI approaches; SectionV
presents the conclusions.

II. BACKGROUND

An uniform linear array (ULA) with M omni-directional an-
tenna elements is considered. The narrowband signal received
by this ULA at the time instant k is represented by equation
(1), where s (k), i (k) and n (k) are the signal, interferer and
noise M × 1 vectors respectively. The signal is assumed to be
uncorrelated with the interferers and the noise.

x (k) = s (k) + i (k) + n (k) (1)

The noise in equation (1) is typically isotropic and it can
be accurately modeled as spatially white Gaussian noise
(AWGN).

A point source - far-field consideration - is assumed so the
signal and the interferers arrive at the ULA as a plane wave.
The contribution of the signal s (k) is expressed by equation
(2).

xs (k) = s (k)a (θs) (2)

In equation (2), the a (θs) represents the steering vector for the
signal arriving from the direction θs [3] and it can be modeled
by equation (3), where φs = 2π dλ cos (θs).

a (θs) =
[
1 exp−jφs · · · exp−j(M−1)φs

]T
(3)

The beamformer output is given by equation (4), where the
vector w is a M × 1 complex weight vector and (·)H denotes
the Hermitian transpose operation.

y (k) = wHx (k) (4)

The vector w can be determined by solving the optimiza-
tion problem established in equation (5), where Ri+n is the
autocorrelation matrix for the interferers and the noise.

min
w

wHRi+nw s.t. wHa (θs) = 1 (5)
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The solution to equation (5) is known as the MVDR
beamformer [5] and it can be expressed by equation (6), where
α is a scaling factor.

wMVDR = αR−1
i+na (θs) (6)

In practice, it is not possible to know the actual Ri+n as
this would imply having all past and future samples available.
So, this matrix is replaced by a data sample covariance matrix
R̂ given by equation (7), where K represents the number of
samples [13].

R̂ ,
1

K

K∑
k=1

x (k)xH (k) (7)

The SMI beamformer [14] is obtained by replacing the
interference-plus-noise covariance matrix Ri+n in the MVDR
beamformer in equation (6) by the sample estimate of the data
covariance matrix (7).

The LSMI beamformer is a robust approach to the SMI
beamformer and it is based on the diagonal loading factor γ
of the sample covariance matrix [15] as it is shown in (8).
So, in equation (6), the matrix Ri+n is replaced by the matrix
RDL.

R̂DL = R̂+ γI (8)

Equation (9) resumes the LSMI method. A problem persists:
how to choose the loading factor γ?

wLSMI = R̂−1
DLa (θs) =

(
R̂+ γI

)−1

a (θs) (9)

It is worth noticing that, as the loading factor increases,
the LSMI solution moves towards the DS one, presenting a
similar spatial spectrum. A loaded matrix RDL with a very
large loading factor is similar to the identity matrix in its
behavior, which makes the LSMI solution work like the DS
one. So some study concerning the loading factor in the LSMI
solution should be made to understand its role.

III. ANALYSIS OF THE LOADING FACTOR γ

Here, the loading factor γ influence on the LSMI perfor-
mance is studied for different parameters: number of antennas
(M ); number of interferers (N ); noise power (σ2

n); and DOI
uncertainty (σ2

DOI ). For each case, different values of γ will
be tested and the corresponding SINR will be calculated based
on the adaptation after 1,000 samples.

Unless otherwise stated, all simulations have the following
standard configuration: 1, 000 samples; 2 users - SOI coming
from 30◦ and interferer, from 70◦; both SOI and interferer
have the same power, σ2

s = 1 and σ2
int = 1; 16 antennas ULA

spaced by 0.5λ; AWGN with variance σ2
n = 1.

A. Loading Factor x Number of antennas

Figure 1 presents LSMI performance as the γ value is varied
for different number of antennas: 8; 16; 32; 64; and 128.

As expected, the SINR increases as the number of antennas
is increased. It is clear that the performance depends on the

γ value: for 8 antennas, a good choice is γ = 1; for 128
antennas, this value should be increased to γ ≈ 100. In this
case, there is no penalty for bigger values of γ, which means
that the SINR will not improve after a certain value for the
loading factor γ. So, the simplest suggestion is γ =Mσ2

n.
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Fig. 1. SINR average according to number of antennas.

B. Loading Factor x Number of interferers

In this case, an ULA with 16 antenna elements is evaluated
under different scenarios: SOI with no interferers; and SOI
with a different number of interferers.

In figure 2, when there is no interferer, the SINR: increases
when the loading factor γ is increased; remains constant when
it assumes values greater than 1. When there is one interferer,
the system behavior is similar: the SINR decreases slowly
for values greater than 108, nonetheless this behavior is not
visible in figure 2. When there are two or more interferers, an
optimal value for the loading factor γ is clearly defined. In
this simulation, the appropriate value should be γ ≈ 0.1σ2

n.
This value changes with variations in noise power and in

the number of antennas as well.

C. Loading factor x Noise power

Here, the results are intuitive: as the noise power increases,
the average SINR decreases. It can be seen in figure 3 that,
at high noise power values, the difference between the peak
SINR’s are rather small compared to situations in which there
is low noise power. Moreover, after a specific value for γ,
the SINR reaches its peak and it does not improve similarly
to what happened in figure 1 with the number of antennas
variation. For this case, the simplest suggestion for the loading
factor value is γ = 1σ2

n.

D. Loading Factor x DOI Uncertainty

LSMI is known as a good algorithm when there is DOI
uncertainty. In order to analyze such situations, a simulation
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Fig. 2. SINR average according to number of interferers.
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Fig. 3. SINR average according to noise power σ2
n.

with the DOI corrupted by noise was done. Here, each
snapshot uses a DOI with a random deviation from its nominal
direction.

Figure 4 shows the results. The bigger is the noise variance,
the bigger is the displacement of the nominal DOI. With small
uncertainty in the DOI (σ2

DOI = 0.1), a good choice is γ >
1σ2

n; with greater uncertainty in the DOI, a good choice is
γ = 0.1σ2

n. In fact, there is a specific optimal value for each
case.

Comparing figures 2 and 4, a similar behavior is noticeable
for the same loading factor γ.

IV. DS, SMI E LSMI COMPARISON

The three methods - DS, SMI and LSMI - are strongly
related.

The DS solution, represented by equation (10), points the
mainlobe towards the DOI and ignores the interferers. When
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Fig. 4. SINR average according to noise power σ2
n in SOI DOA.

the number of antennas is increased, the amplitude of the
sidelobes decreases.

wDS = a (θs) (10)

The SMI solution places the mainlobe on the DOI and the
nulls on the directions of the interferers. By doing this, the
SMI solution creates several sidelobes with great amplitudes
and this lets a lot of noise to be perceived by the beamformer
from other directions.

Examining the LSMI equation given by equation (9), it
is possible to see that, as the loading factor γ is increased,
wLSMI becomes similar to wDS . Choosing a very large
loading factor γ value for the LSMI makes it practically
identical to the DS solution. So, the LSMI just treads the
reduction of the sidelobes with the ability to refuse interferers.
As the γ value increases, the sidelobe reduction happens faster
than the ability to refuse interferers. Therefore, an optimal
value for γ may be expected.

One simulation considering different values for the loading
factor: γ = 2σ2

n and γ = 10σ2
n, as suggested in previous

works; plus an extreme case (γ = 1, 000, 000σ2
n) was devel-

oped. This last case will be evaluated in order to analyze the
beamformer behavior as the loading factor is raised to extreme
values. These three cases for the LSMI will be treated as
LSMI 1, LSMI 2 and LSMI 3 respectively. The system and the
environment is configured as follows: a 64 antennas ULA with
a 0.5λ space between them; 2 signals, the SOI coming from
30◦ and the interferer, from 70◦; both signals have unitary
variance; and the noise is considered AWGN with variance
σ2
n = 1. Moreover, both signals do not change their directions

during all the simulation.
Figure 5 presents the spatial spectrum. The SMI solution

has: the mainlobe at 30◦; the null at 70◦; and the sidelobes
with relatively big amplitudes. These sidelobes also explain
why the SMI has the worst performance as it perceives a lot
of noise and interferers from other directions than the DOI.
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Fig. 5. Spatial spectrum for the five cases.
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Fig. 6. SINR behavior for the five cases.

From figure 6, it is noticeable that the DS solution presents
the best SINR overall, only being surpassed in brief moments
by the LSMI 1 and LSMI 2 solutions. Moreover, this figure
makes it clear that, as the loading factor increases, the SMI
spatial spectrum becomes more and more similar to the DS
one. Here, the most interesting behavior is in the SINR for
the LSMI 3: it collapses to the DS solution. This behavior
was expected as raising the loading factor γ to extreme values
makes the autocorrelation matrix R̂ work like an identity
matrix I as the diagonal elements are way bigger than the
others.

V. CONCLUSIONS

This paper analyzed the influence of the loading factor γ
on the LSMI performance. Four different parameters variations
were studied: (i) number of antennas; (ii) number of interfer-
ers; (iii) noise power; and (iv) DOA uncertainty.

Cases (i) and (iii) indicate that there is a minimum value
for the loading factor γ and no signifcant penalty in the SINR
performance for bigger values; cases (ii) and (iv) show that
the loading factor γ should be chosen carefully as it presents
higher SINR performance for certain values. In these two
situations, choosing γ = 2σ2

n or γ = 10σ2
n, as suggested by

previous works, is not necessarily an ideal solution.
Overall, it is relevant to note that, as the loading factor γ

increases, the shape of the LSMI spatial spectrum shifts to the
DS spatial spectrum and so the capacity to reject interferers
is decreased. Therefore, it is necessary to balance these two
properties: the reduction of the sidelobes amplitudes; and the
capacity to reject interferers. In situations with a great number
of antennas and a small number of interferers, it seems that
there is no appreciable advantage in using the LSMI solution.
So, using the DS approach may be a good solution as it has
the advantage of minimal computational cost.
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