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Power Spectrum Detection Using Clustering
Luiz Paulo de A. Barbosa, Edmar C. Gurjão, Francisco M. de Assis

Abstract— Spectrum detection is the basic tool to permit
cognitive radio to utilize an empty channel and opportunistically
transmit. Considering the sparse utilization of the frequency
spectrum, in this paper we propose the use of k-means clustering
algorithm to create an sparse representation of the Power
Spectrum Density (PSD) of a received signal, and a method
to extract the spectral information from it. Preliminary results
show the possibility of to identify the occupied channels using
this sparse representation followed by some simple processing.
The proposed method have low complexity, and under proper
conditions it can achieve approximately 99% of correct channel
detection on average.

Keywords— Spectrum, Detection, Clustering, Sparse, Repre-
sentation.

I. INTRODUCTION

New systems and applications like 5G, Internet of Things
(IoT) and others based in wireless transmission, pushed
back the discussion about frequency spectrum utilization. In
Cognitive Radio (CR) [1], [2] such discussion has evolved
considering that a channel not assigned to or not in use by
a Primary User (PU) can be opportunistically explored by
Secondary Users (SU). Such utilization needs techniques for
spectrum detection, i.e., methods to analyze and to detect if a
given channel is free at a given moment.

In CR, spectrum detection [3] is the basic tool to permit a
secondary user to utilize an empty channel and opportunis-
tically transmit. Several spectrum sensing techniques have
been proposed [4], [5], such as energy detection method [6],
which compares the energy measured in the channel with a
chosen threshold in order to decide about channel occupancy.
However, this method has a poor performance on low Signal
to Noise Ratio (SNR) regime. Searching for a signal char-
acteristic or statistical characteristics in the received signal
Signal Feature and Cyclostationary Methods [7] respectively
give better performance that Energy Detection. Signal feature
implies to know exactly the characteristics of the transmitted
signal and Cyclostationary has a high complexity. Variations
of these methods have been proposed, and it can be observed
that great part of these methods extract characteristics of the
raw received signal.

Observing the frequency representation of the received
signal as the Power Spectrum Density (PSD) produced by
measurement equipment, like Spectrum Analyzers [8], it can
be noticed that the PSD of a received signal can be modeled
as a sparse signal. For example, consider the illustration of a
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set of active channels, Figure 1, represented with rectangles
to depict their bandwidths and relative power. In this graphic
representation it is clear that only a fraction of the spectrum
is utilized and that several channels with different bandwidths
could be transmitting in the spectrum holes. This conclusion
could be reached also by processing the PSD of such system,
illustrated in Figure 2, by choosing a threshold to represent
the noise floor in the PSD, and by keeping every point above
this threshold, or better, keeping only their positions in the
frequency axis. This would lead to an sparse representation
of the PSD, and one that preserves the information about
spectrum occupation which is necessary to perform spectrum
sensing in CR. In this paper we propose a method to extract
and to process an sparse representation of a PSD in order to
detect the channels in use. The proposed method presents a
good performance, as shown by the analysis performed on
simulation results.

The rest of this paper is organized as follows, in Section II
the system model is presented and in Section III the pro-
posed channel detection method is described. In Section IV
the experimental procedure to test the proposed method is
presented, and in Section V the obtained results are presented
and discussed. Conclusion are drawn in Section VI.

II. SYSTEM MODEL

The system model is composed by a set of transmitters
xi(t), i = 1, 2, ..., N , transmitting in channels with central
frequencies fci and bandwidths Bi. Transmitters have different
bandwidths and in certain moment they can be off, so the
associated channel is free. Signal at receiver is given by

s(t) =

N∑
i=1

αixi(t) + n(t) (1)

where αi is the channel attenuation and n(t) the Addi-
tive White Gaussian Noise with N (0,

σy

10(SNR/20) ) for SNR
in dB, and σy denoting the standard deviation of y(t) =∑N
i=1 αixi(t).
The i-th signal transmitter is modeled by a chirp signal,

given by
xi(t) = cos(2πfi(t)t), (2)

where

fi(t) = f0i +
(f1i − f0i)

T
t and i = 1, 2, . . . , N. (3)

Particularly, defining fci = (f0i + f1i)/2 and making N
= 9, one possible choice of frequencies can be 50, 100,
175, 225, 300, 375, 400, 425, and 475 kHz with associated
bandwidths Bi of 25, 25, 50, 25, 100, 10, 10, 10, and 50 kHz.
In Figure 1, an illustration of this configuration with rectangles
representing the possible active channels, their bandwidths and

582
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relative power is presented. An example of estimated PSD at
the receiver, computed using the Welch method [9], is shown
in Figure 2.

Fig. 1. Illustration of a possible choice of active channels for N = 9.

Fig. 2. PSD graph of a possible choice of active channels with N = 9 and
SNR = 40 dB. Indication of the magnitude of the vertical axis in dB mean
10 log(W/Hz).

Channels with different bandwidths consider a receiver with
a frequency range over various fixed channel bandwidths
systems. This assumption is based on receivers for Software
Defined Radio systems like Universal Software Peripheral
Radio (USRP) [10], which are designed for RF applications
from DC to 6 GHz, including multiple antenna systems. Also,
modern Spectrum Analyzers using parallel signal acquisition
can simultaneously cover a great range of frequencies.

One of the main motivation to spectrum reutilization in CR
was low spectrum utilization by assigned users, or primary
users, in a certain area. The PSD of such spectrum can be
modeled as a sparse signal, and in next section we propose
a method that uses a sparse representation and processing of
such PSD to detect occupied channels.

III. CHANNEL DETECTION METHOD

The proposed method is based on processing the PSD at
the receiver. To detect occupied channels, initially k-means
algorithm [11] is applied to cluster the PSD points, using only
the magnitude values of the vertical axis, and therefor produc-
ing a set C = {cj | cj is the center point of cluster j, j =
1, 2, . . . , k}. In sequence, the elements of C are used to define
an adjustable threshold, η(C), to serve as reference for the
noise floor

η(C) = cmin + β

∣∣∣∣ (cmin + cmax)

2

∣∣∣∣ , (4)

where cmin and cmax are the minimum and the maximum
elements of set C, and β and adjust parameter discussed below.

The PSD points with magnitude above η(C) are automat-
ically marked and an sparse representation of the PSD is
obtained. Spectrum analysis is performed by processing the
sparse representation.

A. PSD Sparse Representation

The sparse representation is an index vector I with ones at
the marked positions. i.e. points above the threshold η(C) in
the PSD, and zero elsewhere. Such points are shown in the top
of Figure 3, in green, where 0 means zero value in the index
set. By processing I it is possible to identify the occupied
channels and to estimate their central frequencies.

In Figure 3 the orange dashed horizontal line is the ad-
justable threshold η(C) and the other horizontal dashed lines,
in black and magenta, indicates respectively whrere cmin and∣∣∣ (cmin+cmax)

2

∣∣∣ are in the vertical axis. The green circles are
the automatically selected points used to create the sparse
representation and the blue vertical dashed lines are the
estimated central frequency f̂ci for each detected channel.

Fig. 3. Example of low SNR case illustrating band rejections parameter γ and
threshold adjustment parameter β. The dashed horizontal line, in orange, is
the adjustable threshold η(C). The black and magenta horizontal dashed lines
indicates respectively where cmin and

∣∣∣ (cmin+cmax)
2

∣∣∣ are in the vertical
axis. The green circles are the selected points. Above the 0dB line a sparse
representation I of the PSD is shown, also in green. The vertical dashed lines,
in blue, are the estimated central frequency f̂ci for each detected channel. In
solid red, is the original signal y(t) and in solid blue s(t) = y(t) + n(t) is
represented.

To extract information about spectral occupancy from the
sparse representation, the sequences of nonzero values (in this
case ones values) in it were analyzed. For the i-th sequence,
its length or distance di with i = 1, 2, . . . , D, between the
first and last nonzero values are computed, and a priori it is
the i-th detected channel. In order to eliminate the influence of
spurious sequences and to optimize performance an adjustable
rejection parameter γ is introduced. It represents a minimum
size of di to detect a channel and declare it as occupied.
Therefore, if a distance di is less than γ, these sequences
are ignored by the method. For the remaining ones the central
frequency of each channel f̂ci is estimated using the location of
the central point of the sequence. This procedure is illustrated
in Figure 4, where for the two sequences in the sparse
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representation, only the first will satisfy the criteria di ≥ γ
and the correspondent channel will be declared occupied.

Fig. 4. Example of how the distances di and parameter γ are used to
implement the rejection of spurious sequences. The vertical dashed line, in
blue, is the estimated central frequency f̂c1 for the detected channel.

Rejection of sequences with less than γ elements is impor-
tant in low SNR regime and a given choice of β, since noise
components can exceed the threshold η(C) and consequently
appear as spurious sequences in the sparse representation.

The effect of sequence selection in the sparse representation
is illustrated in Figure 3, where the effect of low SNR present
itself as various spurious sequences been selected and pro-
jected onto I . By properly adjusting γ this effect is minimized
in the processing of the sparse representation leading to the
correct detection and frequency estimation of all 4 detectable
channels. A fifth channel centered at 300 kHz is originally
present in y(t), in red, but the choice of its attenuation factor
α and low SNR combined, made this channel undetectable on
s(t), in solid blue, by the proposed method. This phenomenon
is know as the Hidden Primary User (HPU) problem in the
context of CR [12]. In Figure 5 the sparse representation of
Figure 3 obtained after discarding the spurious sequences is
shown.

Fig. 5. Detail of sparse representation of Figure 3 after discarding spurious
sequences. The vertical dashed lines, in blue, are the estimated central
frequency f̂ci for each detected channel.

IV. EXPERIMENTAL PROCEDURES

For experimental purpose, the number of possible channels
was set to N = 9 and we consider 5 primary users active at
time. Considering that all possible combinations of

(
9
5

)
of these

channels are used, we obtained a total of 126 examples, all
under the same SNR. The choice of PUs is based on the model
described in Section II which is also presented in Figure 1.

The signal at the receiver is simulated by

s(t) =
∑
i∈Γ

αixi(t) + n(t), (5)

where Γ is an index vector indicating the 5 active primary
users and parameters αi ∈ (0, 1] are uniformly distributed. For
xi(t), Equation (2), the frequency limits were set as f0i =
fci − Bi/2 and f1i = fci + Bi/2 and to achieve a target
SNR, specified in dB, an additive noise component n(t) with
distribution N(0,

σy

10(SNR/20) ) is used. Finally, Welch method
is applied to estimate the power spectral density of signal s(t),
Equation (5).

For each processed PSD the detection method returns a
list with the estimated central frequencies f̂ci, and the core-
spondent channel is declared a Detected Bandwidth (DBW ).
Ideally these list is supposed to have five components, one
for each active channel, and the estimated frequencies are
expected to be contained within the limits of the bandwidths
Bi of the active channels. When the detected bandwidth
coincides with an active channel, such band is declared as
a Matched Bandwidth (MBW ). It is important to clarify that
this match verification is only possible in simulation, and it
is done to evaluate the performance of the method. In this
scenario, we can obtain:

1) number DBW ≤ 5, and all declared as MBW ;
2) mismatch between the number of DBW and MBW .
Based on the above situations, the metrics used to access

the proposed method performance are:
• µDBW , mean of the quantity of DBW and its correspon-

dent in percentage computed relative to number of active
channels, in this case 5 active channels;

• µMBW , mean of the quantitiy of MBW and its corre-
spondent in percentage computed relative to number of
active channels, in this case 5 active channels;

• the ratio ρ between µMBW and µDBW in percentage;
To compute the results in Tables I, II, and III, data was

collected for SNRs of 5, 10, and 15 dB . For each SNR,
empirically adjusted non optimized parameters β assuming
values of 0.3, 0.4 and 0.5 and γ with possible values of 4
and 5 were tested. For all experiments, k-means algorithm
was configured with parameter k = 5.

V. RESULTS

The number of active channels is Z = 5, then, in the best
case MBW = 5, however, depending on the SNR, spurious
sequences due to noise can be marked by the proposed method,
and DBW can be greater than Z. When DBW > Z the
proposed method will declare the excess channels as in use
producing false alarms. Still, the main focus of this work is on
the unused channel declaration, and the occurrence of type II
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errors will be assessed in this paper by the MBW < 5. To as-
sess reliability of the method the measure ρ = µMBW /µDBW
is used to indicate the percentage of DBW that was indeed
an active channel.

For threshold parameter β = 0.5 and rejection factor γ = 5,
considering the performance relating Detected Bands (DBW )
and Matched Bands (MBW ), given by ρ = µMBW /µDBW ,
it was obtained 99.38, 97.79 and 94.94 % of correct DBW s
for SNRs of 15, 10 and 5dB respectively. However, these
configuration does not promote the best results in terms of
µDBW , as ρ express the relation of the average number of
DBW s and MBW s and it can occur with µDBW and µMBW

well below Z.
By choosing parameters β = 0.3 and γ = 4 the method

is able to detect more bands improving µDBW in exchange
for a small decrease in the values of ρ. This configuration can
represent a good trade off between ρ and µDBW with ρ never
below 90 % of correct DBW considering all tested conditions
which indicate a satisfactory reliability.

To explore the distribution of outcomes for this configura-
tion 50 sets of 126 examples with β = 0.3 and γ = 4 where
decomposed in terms of DBW , MBW and DBW −MBW
and averaged. The percentages are the proportions, computed
relative to 126, that an outcome have a certain value of DBW ,
MBW and DBW −MBW . The SNR of 10 dB was selected
because it approximates the mean of parameter ρ for this
configuration.

In Figure 6 the distribution of outcomes in terms of Detected
Bands (DBW ) is presented. It can be observed that 88.57 %
of the outcomes have DBW between 3, 4 and 5 the specific
proportions are respectively 10.97, 36.38, 41.22 %. Also,
outcomes with 6, 7 and 8 DBW are present in 10.49 % of
cases, what implies in to consider more channels in use than it
really are. Similarly in Figure 7, 99.02 % of the outcomes can
be attributed to 3, 4 and 5 MBW s in the following proportions
12.03, 41.37 and 45.62 % in this order.

Fig. 6. Decomposition in terms of number of DBWs.

Figure 8 presents the difference between DBW s and
MBW s. It can be seem that for 83.38 % of the outcomes
the number of DBW is equal to the number of MBW , with
the remaining 16.62 % accounting for an excess of 1, 2, or
3 DBW . This excess can be associated with a detection of

Fig. 7. Decomposition in terms of number of MBWs.

multiples bands within a single channel bandwidth or with
incorrect detection as an effect of SNR and other factors.

Fig. 8. Decomposition in terms of the difference between DBWs and MBWs.

As mentioned in Section IV, the parameters β and γ
were chosen empirically and better results could have been
achieved with a more deep investigation of their influence in
the performance of the method.

Furthermore, it can be observed in Figure 3, that the sparse
representation of the PSD, superior portion of the figure over
0dB line, in green, contains the information of spectrum
occupancy.

TABLE I
AVERAGE VALUES FOR THE THE NUMBER OF DBW AND MBW FOR

SNR = 15dB.

SNR=15dB
γ γ = 4 γ = 5

β 0.3 0.4 0.5 0.3 0.4 0.5
µDBW 4.55 4.38 4.21 4.44 4.28 4.07

µDBW (%) 90.94 87.61 84.11 88.71 85.68 81.44
µMBW 4.46 4.31 4.15 4.39 4.25 4.05

µMBW (%) 89.23 86.27 86.27 87.77 85.06 80.94
µMBW /µDBW (%) 98.13 98.47 98.77 98.94 99.28 99.38
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TABLE II
AVERAGE VALUES FOR THE THE NUMBER OF DBW AND MBW FOR

SNR = 10dB.

SNR=10dB
γ γ = 4 γ = 5

β 0.3 0.4 0.5 0.3 0.4 0.5
µDBW 4.52 4.29 4.08 4.32 4.14 3.90

µDBW (%) 90.38 85.74 81.57 86.35 82.72 77.97
µMBW 4.32 4.13 3.94 4.20 4.03 3.81

µMBW (%) 86.32 82.54 78.89 83.98 80.63 76.25
µMBW /µDBW (%) 95.50 96.26 96.71 97.26 97.47 97.79

TABLE III
AVERAGE VALUES FOR THE THE NUMBER OF DBW AND MBW FOR

SNR = 5dB.

SNR=5dB
γ γ = 4 γ = 5

β 0.3 0.4 0.5 0.3 0.4 0.5
µDBW 4.46 4.17 3.83 4.16 3.86 3.49

µDBW (%) 89.30 83.36 76.61 83.10 77.27 69.76
µMBW 4.02 3.81 3.54 3.88 3.63 3.31

µMBW (%) 80.46 76.17 70.90 77.62 72.64 66.23
µMBW /µDBW (%) 90.10 91.37 92.55 93.41 94.02 94.94

VI. CONCLUSIONS

In this paper we proposed a method for spectrum detection
based on sparse representation of the power spectrum density
in a receiver. Considering a spectral model where channel have
different bandwidths, and suffer from different attenuation,
obtained results shows the feasibility of the proposed method
to detect used channels, the first step for spectrum detection
in Cognitive Radio.

The proposed method automatically select the occupied
bands using k-means algorithm and tunable thresholds. Ob-
tained results shows that under proper conditions more than
99% of correct channel detection can be achieved.

As future works a cooperative approach with nodes in a CR
network sharing the sparse representation of the spectrum will
be investigated. Additionally, new techniques and algorithms
will be investigated in an effort to improve spectral occupancy
detection.
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