Análise Numérica e Experimental entre Antenas Dipolo e *Bowtie*

Daniel Dias dos Santos, Deisy Formiga Mamedes, João Paulo da Silva, Juliete da Silva Souza, Thamyris da Silva Evangelista, Paulo Henrique da Fonseca Silva.

Resumo— Neste artigo é apresentado o desenvolvimento de antenas dipolo e *bowtie* para aplicação na faixa de 2400-2483,5 MHz dos padrões IEEE802.11b,g,n (Wi-Fi) e IEEE802.15 (Bluetooth). Nas medições, as antenas foram alimentadas por meio de um cabo *Pigtail*. As antenas foram caracterizadas numericamente utilizando o Ansoft DesignerTM. Em comparação com uma antena de microfita dipolo a antena *bowtie* proposta apresentou um aumento de 46% em sua largura de banda de operação, nos resultados simulados e 9% nos resultados medidos. São apresentados resultados numéricos e experimentais, observando-se uma boa concordância entre os mesmos.

Palavras-Chave — Antena Dipolo, antena *bowtie*, aumento da largura de banda.

Abstract— In this paper the development of dipole and bowtie antennas for application at 2400-2483.5 MHz range of IEEE802.11b, g, n (Wi-Fi) and IEEE802.15 (Bluetooth) standards is presented. In the measurements, the antennas were fed by using a cable Pigtail. The antennas were characterized numerically by using the Ansoft DesignerTM. Compared to a dipole microstrip antenna the proposed bowtie antenna showed an increase of 46% in its operating bandwidth, in the simulated results and 9% in the measured results. Numerical and experimental results are presented, observing a good agreement between them.

Keywords — Dipole antenna, bowtie antenna, increased bandwidth.

I. INTRODUÇÃO

A demanda cada vez maior pela conectividade em banda larga para viabilizar negócios, diversão, comunicação pessoal em tempo real e serviços baseados no Protocolo da Internet – IP tem permitido a maximização das receitas das operadoras e dos fabricantes do setor de telecomunicações. Quando associada à mobilidade, a busca pela conectividade torna-se ainda mais determinante para os usuários. Esse fato pode ser comprovado pela massificação do acesso aos serviços de comunicações móveis em todo o mundo. Nos últimos anos, o interesse por dispositivos leves, compactos, com custo reduzido e que possam operar nas mais diversas faixas de frequência e seus respectivos serviços (TV Digital, telefonia sem fio, sistemas de posicionamento, etc.) tem chamado a atenção de técnicos, engenheiros e pesquisadores da área de engenharia de Telecomunicações [1]-[4].

Elementos radiadores que possuem banda larga, alta eficiência de radiação e baixas dimensões, são de bastante interesse prático para aplicações em sistemas de comunicações. Com relação à primeira característica, esta se torna um requerimento fundamental para antenas quando se deseja transmitir sinais que possuem bastante informação, por exemplo, sinais de vídeo e sinais de dados com altas taxas de transmissão [5].

Em meio a este mercado em constate crescimento, o surgimento de novas tecnologias requer antenas com maior largura de banda. Na pesquisa as antenas fabricadas em microfita têm uso abrangente em aplicações militares (por exemplo, em mísseis e aeronaves) e comerciais, em sistemas de comunicação sem fio [5]-[6].

Neste trabalho são apresentadas antenas do tipo *patch* dipolo e *bowtie* para operação na faixa de frequências em 2,4 GHz, 2400-2483,5 MHz. Esta faixa é usada, por exemplo, nos padrões: IEEE802.11b,g,n (Wi-Fi), em redes locais WLAN, Wireless Local Area Network; IEEE802.15 (Bluetooth), em redes pessoais WPAN, Wireless Personal Area Network.

As antenas propostas são caracterizadas numericamente utilizando o *software* Ansoft DesignerTM. Após a otimização, as antenas foram fabricadas e caracterizadas experimentalmente, sendo os resultados obtidos comparados com os resultados numéricos, observando-se uma boa concordância entre os mesmos.

II. MATERIAL E MÉTODOS

A. Antena Patch

Uma antena de microfita pode ser vista como sendo constituída por um patch metálico depositado sobre um material dielétrico na faixa de $(2, 2 < \varepsilon_r < 12, 0)$ limitado por um plano condutor, como ilustrado na Figura 1, em que L = corresponde ao comprimento da antena de microfita retangular, W = é a largura da antena de microfita retangular e h = é a altura do substrato dielétrico.

O material condutor normalmente utilizado é o cobre, mas em algumas aplicações, como em ondas milimétricas, utiliza-se o ouro, devido à sua maior condutividade [5].

Fig.1 Antena do tipo patch retangular de microfita [5].

Daniel Dias dos Santos, Deisy Formiga Mamedes, João Paulo da Silva, Juliete da Silva Souza, Thamyris da Silva Evangelista, Paulo Henrique da Fonseca Silva. Grupo de Telecomunicações e Eletromagnetismo Aplicado, GTEMA Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, IFPB João Pessoa, PB, Brasil, gtema.ifpb@gmail.com.

Nas antenas impressas, os elementos irradiantes e as linhas de alimentação (no caso das antenas alimentadas através de linhas de microfita) estão sobre o substrato dielétrico. O elemento irradiante pode ser quadrado, retangular, fita fina (dipolo), circular, elíptico, triangular ou possuir qualquer outra configuração. As formas quadradas, retangular, dipolo e circular são os mais comuns devido à facilidade de análise e fabricação, e as suas características de radiação. A forma do patch influencia na distribuição de corrente e, consequentemente, na distribuição do campo na superfície da antena. [5].

B. Antena Dipolo

A antena proposta consiste em um dipolo de comprimento total igual a *L*. O comprimento, a largura e o *gap* inicial da estrutura foram projetados com o auxílio do *software* HFSS necessitando-se inserir o valor da frequência de ressonância do projeto. Os valores iniciais obtidos foram alterados empiricamente com o decorrer das simulações, objetivando-se alcançar a frequência de ressonância desejada e um aumento na largura de banda da antena.

A antena desenvolvida possui comprimento L = 21,5 mm, largura W = 1,3 mm e um gap g = 1,3 mm, como apresentado na Figura 2.

Fig.2 Antena dipolo.

C. Antena Bowtie

A antena proposta possui uma geometria baseada em dois triângulos isósceles separados por um *gap*, esta geometria foi projetada com o auxílio do *software* HFSS. Inicialmente necessitou-se inserir o valor da frequência de ressonância desejada para obter as dimensões inicias da geometria e ao decorrer das simulações o comprimento dos triângulos e o *gap* foram alterados empiricamente para otimização da frequência desejada e o do aumento da largura de banda.

A antena desenvolvida possui comprimento L = 17,4 mm, largura W = 16 mm e um gap g = 1 mm, como apresentado na Figura 3.

Fig.3 Antena bowtie.

III. RESULTADO E DISCUSSÃO

As simulações foram realizadas através do *software* comercial Ansoft DesignerTM, ferramenta CAD (Desenho Assistido por Computador) para circuitos e simulações de micro-ondas, que utiliza como princípio de funcionamento o Método dos Momentos (MoM).

A caracterização experimental foi realizada no Laboratório do Grupo de Telecomunicações e Eletromagnetismo Aplicado, GTEMA, do Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB), utilizando-se um analisador de redes vetorial Agilent, E5071C. Para todas as antenas foram utilizados o substrato da Hitachi, com permissividade elétrica relativa, $\varepsilon_{\rm r}$, de 4,78, tangente de perdas, $tg(\delta)$, de 0,019 e espessura, *h*, de 1,5 mm. As Figura 4 e 5 apresentam respectivamente as antenas dipolo e *bowtie* fabricadas.

Fig.4 Antena dipolo fabricada.

Fig.5 Antena bowtie fabricada.

Os dados coletados a partir dos resultados medidos e simulados foram plotados em gráficos no *software* Matlab. Os resultados medidos foram comparados com resultados numéricos, como está representado nas Figuras 6 e 7, é possível observar a variação da perda de retorno (parâmetro S_{11}) em função da frequência de ressonância.

Fig.6 Comparação da medição e simulação – $|S_{11}|$ (dB) x Freq. (GHz), antena dipolo.

Na Figura 6, a frequência ressonante simulada e medida foi de 2,4 GHz, com uma perda de retorno de -28,85 dB e -23,51 dB respectivamente, Tab. I. A largura de banda medida foi de 495 MHz, 60,71% maior que o valor simulado, Tab. II.

Fig.7 Comparação da medição e simulação – $|S_{11}|$ (dB) x Freq. (GHz), antena *bowtie*.

Na Figura 7, a frequência ressonante medida de 2,22 GHz, com uma perda de retorno de -32,22 dB, enquanto a frequência de ressonância simulada foi de 2,38 GHz, com uma perda de retorno de -21,71 dB, Tab. I. A largura de banda medida foi de 540 MHz, 20% maior que o valor simulado, Tab II.

 TABELA I.
 VALORES SIMULADOS E MEDIDOS PARA A FREQUÊNCIA DE RESSONÂNCIA.

Antena	Resultado	f_0 (GHz)	$ S_{11} $ (dB)
Dinala	Simulado	2,4	-28,85
Dipolo	Medido	2,4	-23,51
Bowtie	Simulado	2,38	-21,71
	Medido	2,22	-32,22

 TABELA II.
 VALORES SIMULADOS E MEDIDOS PARA A LARGURA DE BANDA.

Antena	Resultado	f_0 (GHz)	f_1 (GHz)	f_2 (GHz)	BW (MHz)
Dipolo	Simulado	2,4	2,267	2,575	308
	Medido	2,4	2,095	2,59	495
Bowtie	Simulado	2,38	2,19	2,64	450
	Medido	2,22	1,97	2,51	540

Os resultados numéricos das antenas dipolo e *bowtie* foram ainda sobrepostos, como está representado na Figura 8. Tanto na simulação quanto na caracterização experimental foi considerado uma perda de retorno (parâmetro S_{11}) de -10 dB como limite para determinação da largura de faixa. É possível observar um aumento de 46,1% em relação à largura de banda.

Fig.8 Comparação da simulação – $|S_{11}|$ (dB) x Freq. (GHz), antenas dipolo e bowtie.

Os resultados experimentais das antenas dipolo e *bowtie* também foram sobrepostos, como está representado na Figura 9. É possível observar um aumento de 9% em relação à largura de banda, esse aumento pequeno foi em decorrências das características do cabo.

Fig.9 Comparação da medição – $|S_{11}|$ (dB) x Freq. (GHz), antenas dipolo e bowtie.

Nas Figuras 10 e 11 são apresentadas as cartas de Smith, para valores simulados.

Fig.10 Carta de Smith, antena dipolo.

Fig.11 Carta de Smith, antena bowtie.

É possível observar que as impedâncias estão próximas ao centro da carta. A resistência de entrada simulada para antena dipolo foi de 54,3 Ω e para a antena *bowtie* 40,98 Ω .

As antenas desenvolvidas não possuem plano de terra, o que as deixa com características de transmissão e recepção menos diretivas. Os seguintes parâmetros de radiação foram considerados: largura de feixe de meia potência (*Half Power Bandwidth* – HPBW) e ganho direcional máximo, Tab. III. Os diagramas de radiação 2D e 3D estão apresentados nas Figuras 12, 13.

Fig.12 Diagrama de radiação, antena dipolo.

Fig.13 Diagrama de radiação, antena bowtie.

TABELA III. PARÂMETROS DE RADIAÇÃO.

	Ganho	Ganho	
Antena	2D	3D	HBPW
	(dBi)	(dBi)	
Dipolo	2.613	2.656	164°
Bowtie	2.573	2.709	164°

Constata-se que a forma dos padrões de radiação permanece praticamente inalterado.

IV. CONCLUSÕES

Neste trabalho foi apresentado a caracterização numérica e experimental de antenas dipolo e *bowtie* para operação na faixa de frequência utilizada pelo sistema *Wi-Fi* e *Bluetooth*. É possível observar que as impedâncias estão próximas ao centro da carta, o que significa que as antenas estão bem casadas. As antenas simuladas apresentaram um diagrama de radiação quase omnidirecional, devido a ausência de plano de terra. Dos resultados obtidos pode-se verificar um aumento na largura de banda da antena *bowtie* quando comparada à antena dipolo de 46,1 % nas simulações e 9% nas medições.

A diferença da largura de banda comparando os resultados medidos e simulados para antena *bowtie* pode ser atribuída ao processo de fabricação. A utilização do cabo *Pigtail* pode ter ocasionado alguma interferência.

REFERÊNCIAS

- Y. Wang e Z. Du, "A Printed Dual-Antenna System Operating in the GSM1800/GSM1900/UMTS/LTE2300/LTE2500/ 2.4-GHz WLAN Bands for Mobile Terminals", IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 233-236, fevereiro 2014.
- [2] S. C. Fernandez e S. K. Sharma, "Multiband Printed Meandered Loop Antennas With MIMO Implementations for Wireless Routers", IEEE Antennas and Wireless Propagation Letters, Vol. 12, pp. 96-99, janeiro 2013.
- [3] P. Vainikainen, J. e M. Kyro, "Antennas for Digital Television Receivers in Mobile Terminals", Proceedings of IEEE, vol. 100, pp. 2341-2348, julho 2012.
- [4] H. S. Singh, M. Agarwal, G. K. Pandey e M. K. Meshram, "A QuadBand Compact Diversity Antenna for GPS L1/WiFi/LTE2500/WiMAX/HIPERLAN1 Applications", IEEE Antennas and Wireless Propagation Letters, Vol. 13, pp. 249-252, Fevereiro 2014.
- [5] C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed., Ed. New York: John Wiley & Sons, , 1997.
- [6] G. Kumar and K. P. Ray, Broadband Microstrip Antennas, USA: Artech House, 2003.