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Bit Error Rate Minimizing Antenna Selection in
Zero-Forcing Precoded MU-MIMO Systems.

Dailys Arronde Pérez and Raimundo Sampaio-Neto

Abstract— This work focuses on the downlink of a Zero-
Forcing (ZF) precoded multiuser multiple-input multiple-output
(MU-MIMO) systems where the Base Station (BS) and the
users stations (UEs) transmit and receive information symbols,
respectively, by selected subset of their antennas. An optimal
transmit antenna selection procedure is proposed aiming at
the maximization of the detection signal-to-noise ratio and
consequent minimization of the detection error probability. A
suboptimal search algorithm able to deliver a performance close
to the one resulting from the optimal exhaustive search selection
is proposed. The receive antenna selection is also performed
using a similar optimization criterion. BER performance results,
obtained via simulation and semi-analytical approaches, are
presented for different scenarios.

Keywords— MU-MIMO, transmit and receive antenna selec-
tion, sub-optimal selection algorithm.

I. INTRODUCTION

MIMO technology is closely linked to the evolution of
wireless communication systems, since it is considered one
of the most suitable solutions to achieve the promising trans-
mission rates, making an efficient use of the spectrum and
energy in the fifth-generation (5G) networks. The use of a
very large number of antennas at the base station (BS) to
achieve more dramatic diversity gains leads to the so called
massive MIMO systems that has been extensively studied in
the last decade. An comprehensive overview from various
perspectives on the topic is provided in [1]- [2]. The main
drawback for the implementation of this technology is the
hardware complexity and cost, that scale with the number of
antennas. In order to overcome this problem, antenna selection
technique, at the transmitter and receiver sides, was proposed
in [3]. The basic idea is to use a reduced number of Radio
Frequency (RF) chains and choose the best subset of all the
antennas combinations. This leads to a notable reduction of
implementation’s cost and complexity.

Prior works consider an approach to receive antenna se-
lection for capacity maximization as a convex optimization
problem. In [4] an alternative approach that reachs near-
optimal performance is proposed and the selection problem
is formulated as a combinatorial optimization problem. In [5]
a Generalized Pre-coding aided Spatial Modulation (GPSM)
system for downlink MU-MIMO is considered.

Recent works address the problem of transmit antenna selec-
tion in massive MU-MIMO systems. A norm-and-correlation-
based selection algorithm for energy efficiency maximization
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to decide the transmit RF chain configuration under the total
power constraint in millimeter wave channel is proposed in
[6]. An antenna selection scheme for Large-but-Finite MIMO
networks, using Genetic Algorithm is addressed in [7], which
can be applied with different amount of channel state informa-
tion (CSI), various data communication models and objective
functions.

In this paper we analyze the downlink of a ZF precoded
MU-MIMO system where each terminal, BS and user’s sta-
tions transmit and receive information symbols, respectively,
by selected subsets of their antennas. A general model to
describe the system and expressions that relate the energy
spent in transmission with the energy available for detection
at each user are presented. An optimal transmit antenna se-
lection criteria is proposed, aiming at the maximization of the
detection signal-to-noise ratio and consequent minimization
of the detection error probability. Another contribution of
this paper is the suboptimal antenna selection algorithm, that
executing iterative searches (ITES) find a near-optimal subset
of antennas, and can be employed with different precoding
methods and channel models. Receive antenna selection is
also performed, using a similar optimization criterion. In both
cases, the base station is responsible for carrying out the
selection procedure. BER performance results, obtained via
simulation and semi-analytical approaches, are presented for
different scenarios.

II. SYSTEM AND SIGNAL MODEL

We consider the downlink of a MU-MIMO system, where
the base station (BS) is equipped with NT transmit antennas
serving K user stations (UEs), each one with NR antennas,
where KNR ≤ NT . Assuming transmission over flat fading
channels and detection in presence of additive noise, the
received signal by all users is expressed in a [KNR×1] vector
y = [y1,y2, . . . ,yK ]T

y = Hx + n, (1)

where H = [HT
1 ,H

T
2 , . . . ,H

T
K ]T , H ∈ CKNR×NT is the

channel matrix for all users, with Hk ∈ CNR×NT representing
the channel matrix that connects the BS with the kth user
and n is a [KNR × 1] noise vector. Perfect channel state
information (CSI) is assumed at the transmitter. The vector
x ∈ CNT×1 contains the information transmitted by the NT
antennas at the BS. In MU-MIMO systems is necessary to
employ a precoding technique to decouple the information
conveyed to the different users and mitigate the multiuser in-
terference (MUI). Then the transmit vector x can be expressed
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as
x = Ps, (2)

where P = [P1,P2, . . . ,PK ], P ∈ CNT×KNR is the pre-
coding matrix and the information symbols for all users are
organized into the s = [sT1 , s

T
2 , . . . , s

T
K ]T vector. Each entry

sk ∈ CNR×1 , k = 1, 2, . . . ,K represents the kth user infor-
mation vector, to be precoded by the matrix Pk ∈ CNT×NR .
Conveniently for our analyses, the sk vectors are represented
by

sk =
√
Eks̃k =

√
Es
√
εk s̃k, (3)

where Ek is the energy of the information symbols sent to user
k, Es = 1/K

∑K
k=1Ek is the average energy of the trans-

mitted information symbols, εk = Ek/Es and s̃k ∈ CNR×1

contains statistically independent symbols with zero mean
and variance 1 in all its entries, taken from the modulation
constellation C = {c1, c2, . . . , cM}, where M is the order of
the modulation. Then (2) can be written as

x =
√
EsPE1/2 s̃, (4)

where E is a diagonal matrix containing the vectors εk =
εku, k = 1, 2, . . . ,K, in its main diagonal, u is a [NR × 1 ]
unit vector and s̃ = [s̃T1 , s̃

T
2 , . . . , s̃

T
K ]T , then E[s̃] = 0 and

E
[
s̃s̃H

]
= IKNR .

A. Energy Relations

The mean energy expended by the BS at each transmission
is

ET = E[‖x‖2] = Tr{E[xxH ]}, (5)

where Tr{A} denote the trace of matrix A.We then have from
(4) that

ET =Tr
{
EsPE1/2E

[
s̃s̃H

]
E1/2PH

}
=Tr

{
EsEPHP

}
= Esγ,

(6)

with γ given by

γ = Tr
{
EPHP

}
=

K∑
k=1

εku
Tgk, (7)

where the column vectors gk are given by

[gT1 ,g
T
2 , . . . ,g

T
K ]T = d

(
PHP

)
, (8)

with d(A) denoting the vector whose entries are the main
diagonal elements of matrix A. Considering (6), and since
Ek = Esεk, we can express the relation between the energy
of symbols conveyed to user k and ET as

Ek = ET
εk
γ

. (9)

B. Zero Forcing Precoding

Zero Forcing (ZF) is a linear precoding technique exten-
sively studied in MU-MIMO systems, since completely re-
move the MUI by applying the right pseudoinverse of channel
matrix, then the precoding matrix is given by

PZF = HH(HHH)−1. (10)

Applying (10) into the signal model described by (1) and (2)
we have

y = HPZF s + n = s + n, (11)

and the signal received by user k is

yk =
√
Eks̃k + nk. (12)

C. Maximum Likelihood (ML) detection

Here we consider that the noise vector in (1) is a complex
white Gaussian noise (AWGN), hence the optimal ML detec-
tion of the signal vector sk provides the estimate

ŝk = argmin
sk∈C

∥∥∥yk −√Eks̃k∥∥∥2. (13)

Since the symbols sent to each user are assumed statistically
independent, decoupled detection may be employed, which
treats the separate ML detection of the NR modulated symbols.
The advantage is that only NR × M hypothesis need to
be tested, instead of the MNR required if joint detection is
implemented, thus the complexity reduction is noteworthy.

III. TRANSMIT ANTENNA SELECTION

To model the transmit antenna selection, we assume that
BS is equipped with Nta RF chains (Nta < NT). At each
transmission, the most suitable subset with Nta active antennas
should be selected, thus we have a total of St =

(
NT
Nta

)
possibles

combinations containing Nta out of NT antennas.
Each set is depicted by a column vector p ∈ RNT ,

whose elements take the values 1 or 0, if the antenna is
activated or not respectively. For instance, let NT = 5 and
Nta = 3, resulting St = 10 possible sets, represented by
the patterns Γ = {p1,p2 . . .p10}. Pattern p1 = [11100]T

indicates that antennas 1, 2 and 3 are selected for transmission,
while antennas 4 and 5 are deactivated. For each subset, we
have a corresponding H(p) ∈ CKNR×Nta that represents the
sub-channel matrix of H obtained by selecting the columns
indexed by p. Consequently the St sub-matrices H(p) ∈
CKNR×Nta are given by

H(p) = HU(p), (14)

where U(p) ∈ CNT×Nta is obtained from INT , suppressing
its ith column, when the ith component of vector p is zero.
The matrix U(p) fulfills the properties UT

(p)U(p) = INta and
U(p)U

T
(p) = D(p), where D(p) is a diagonal matrix with

the elements of vector p on its main diagonal. Then, the
expression of the zero forcing precoding matrix for a given
pattern p can be expressed as

P(p) =HH
(p)

[
H(p)H

H
(p)

]−1
=UT

(p)H
H
[
HD(p)HH

]−1
.

(15)

From (9) and (12) it results evident that, for a fixed energy
distribution εk, k = 1, 2, . . . ,K and a given energy ET
available at the transmitter, maximizing the detection energy
Ek at the receivers is equivalent to minimizing the factor γ
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given by (7) and (8). Hence the optimization problem can be
rewritten as

min
p∈Γ

γ(p), (16)

where γ(p) is given by

γ(p) =

K∑
k=1

εku
Tgk(p), (17)

with

[g1
T
(p),g2

T
(p), . . . ,gK

T
(p)]

T =d
(
PH

(p)P(p)

)
=d
([

HD(p)HH
]−1)

.
(18)

A. Proposed Suboptimal Search Algorithm ITES

Given the channel matrix H and the normalized energy
distribution εk, k = 1, 2, . . . ,K, the subset of antennas that
minimize γ(p) can be obtained by exhaustive search, i.e.
testing all possible patterns p. However, as the number of
transmit antennas and available RF chains grow, the search
complexity, that includes the inversion of large dimension
matrices for each tested configuration pattern p, increases
dramatically. In this paper, we propose a sub-optimal search
algorithm, described in Algorithm 1. ITES (Iterative Search)
is based on a pilot-symbols allocation algorithm for OFDM
systems proposed in [8]. It starts the algorithm by considering
an initial pattern pinit, randomly selected from the set ΓSt ,
and its associated metric γinit. The vectors αi and δj index
the able and unable antennas respectively. The algorithm
generate new patterns by moving the active antennas positions
independently, thus we have a new pattern for each possible
position, e.i. each element pαi→δj of de set Ωi is generated
by deactivating the ith antenna and activating the jth. The
set Ωi is composed by Nd new patterns and we find the one
that results in the best value of γ. Then the optimum pattern
is saved in potm for the next cycle. Note that each iteration
implies Na × Nd trials of antenna assignments. The process
continues until no improvements in γ calculation are found,
i.e. the algorithm stops when two consecutive iterations return
the same pattern.

ITES can be implemented for different scenarios and pre-
coding schemes. Moreover, as will be seen in the following,
it reaches results near the optimal solution with significantly
less implementation complexity.

IV. RECEIVE ANTENNA SELECTION

To evaluate the receive antenna selection, we consider that
each user is equipped with NR receive antennas and only Nra
RF chains (Nra < NR). The total number of combinations
containing Nra out of NR antennas is given by Sr =

(
NR
Nra

)
.

The most appropriate set of Nra antennas is selected by the
transmitter to receive the information symbols, i.e. the BS
selects the set that maximizes the detection energy at each
UE and must notify the users which of the Sr possible patterns
is chosen for transmission, in order to guarantee the correct
signal detection. In the receiving antenna selection case, the
signal vector conveyed to user k is expressed by

sk =
√
EkD(qk)s̃k =

√
Es
√
εk D(qk)s̃k, (19)

Algorithm 1: Iterative Search Algorithm (ITES)
Input: pinit, γinit

Output: potm

1 Initialization: potm = pinit , γ
in = γinit

2 αi → index the Na active antennas
3 δj → index the Nd = (NT −Na) deactive antennas
4 do
5 γout = γin

6 for i = 1 to Na do
7 p = potm

8 Ωi =
{
pαi→δj

}Nd

j=1

9 p = minp∈Ωi γ(p)

10 if γ(p) < γin then
11 γin = γ(p)

12 potm = p
13 else
14 end
15 update the vector δj for the next cycle
16 end
17 keep the best pattern potm for the next iteration
18 while (γin < γout);

where the NR-dimensional vector qk has Nra entries 1 and
the remaining are zero. Its non-zero entries indicate the
information bearing (IB) antennas to which the receiver Nra

RF chains are to be connected. Here the relation (6) assumes
the form

ET = EsTr
{
ED(qall)P

H
ZFPZF

}
= Esγr, (20)

where qall = [qT1 ,q
T
2 , . . . ,q

T
K ]T and the γr factor is given by

γr = Tr
{
ED(qall)P

H
ZFPZF

}
=

K∑
k=1

εkqk
Tgk, (21)

where vectors gk, k = 1, . . . ,K obtained according to (8) and
(10) are given by

[gT1 ,g
T
2 , . . . ,g

T
K ]T = d

(
PH

ZFPZF
)

= d
([

HHH
]−1)

. (22)

As pointed out in the previous section, by minimizing γr the
detection signal-to-noise ratio of all users are maximized. In
order to minimize γr we consider the independent minimiza-
tion of the terms in the summation (21), since they are all
positive and each one is associated to a single user. Among
the Sr possible choices of pattern q, the one that results in
minimal qTgk is selected for user k. This is done by simply
setting to one the elements of q, in positions corresponding
to the smaller values of gk entries.

A. Notification

As mentioned before, to guarantee correct detection the UE
receiver must connect its Nra RF chains to the correct set of
Nra IB antennas. Since the IB pattern selected by the BS may
change according to the variations of the channel, information
regarding the pattern selection has to be periodically sent to the
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UE receiver (UE notification) where a very reliable retrieval
of this information has to be performed. To implement the UE
notification we consider a frame transmission scheme, where
signals informing the index of the selected pattern are sent to
the users during the notification period, preceding the user data
frame. The antenna pattern used during the notification period
is fixed and known a priori by the receivers. Moreover by
sending the same notification information several times, it is
possible to further reduce the notification error probability. The
UE receiver accumulates the signal vectors received during the
notification period and performs detection using the resulting
summation signal. With this procedure, if Fnot is the number
of repeated transmissions adopted, a detection signal-to-noise
gain of 10 log10(Fnot) dB is obtained.

V. NUMERICAL RESULTS

In this section, numerical results are presented to evaluate
the bit-error-rate (BER) performance of the considered systems
in different scenarios. The curves are obtained after NCR

independent realizations of the channel matrix H. The entries
of H, are complex independent circularly symmetric gaussian
random variables with zero mean and unity variance. The
noise vector in (1) is a complex zero-mean gaussian vector
with circularly symmetric components and covariance matrix
Kn = σ2

nI. Results are expressed in terms of the signal-to-
noise ratio

SNRdB = 10 log10

(
ET
σ2
n

)
, (23)

and QPSK modulation is assumed. From (9) we have that the
detection signal-to-noise ratio per receive antenna is

Ek
σ2
n

=
ET
σ2
n

εk
γ

= SNR
εk
γ
. (24)

Therefore, with ML detection performed by the UE re-
ceivers it results that for a given channel realization and
antenna pattern selection the user k conditional bit-error-rate
is given by

BERk(γ) = Q

(√
Ek
σ2
n

)
= Q

(√
SNR

γ
εk

)
, (25)

where Q(.) is the Q-function defined as

Q(x) =
1

2π

∫ ∞
x

exp

(
−β

2

2

)
dβ (26)

and the user k BER performance is

BERk = E

[
Q

(√
SNR

γ
εk

)]
. (27)

In a semi-analytical approach we approximate (27) by

BERk ∼=
1

NCR

NCR∑
i=1

Q

(√
SNR

γi
εk

)
. (28)

We note that (25) and the approximation (28), with γ(p) given
by (17) and (18), are applicable to the case of transmit antenna
selection but they can be used in the receive antenna selection
case, with γr given by (21) and (22), only if error free
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Fig. 1. BER vs. SNR(dB) for NT = 8, NR = 4 and K = 2.

notification is assumed. The results in this section consider
an uniform user energy allocation (εk = 1, for all k).

Fig.1. compares the BER performance obtained with Monte
Carlo simulation and with the semi-analytical approximation
(28). In both cases the results are for NCR = 1000 channel
realizations, and in the Monte Carlo simulations a data frame
of 1200 signal vectors are transmitted to each user per channel
realization. Considering the coincidence of the BER results,
the much less computation time consuming approximation
(28) was used to generate the results presented in figures 2
and 3.

The results in Fig.2. are for transmit antenna selection and
illustrate the BER performance when the BS is equipped
with different number of antennas and RF chains. It is easily
observed that the case of no selection with 10 available
antennas gives the best performance, but it requires a RF chain
connected to each transmit antenna. However, if we have 6 RF
chains available a notable improvement in BER performance is
obtained when BS is equipped with 10 antennas and the most
suitable set of 6 antennas is selected for transmission when
compared to the case of 6 fixed antennas. The results shown
in Fig.3. correspond to a scenario with NT = 20, Nta = 6, K
= 2 and NR = 3 and illustrate the high gain in performance
obtained with the proposed BER minimizing antenna selection
approach when compared with a non-selective choice, where
one of the possible St sets is randomly selected for each
channel realization. Also in this figure are the BER results
obtained with the use of the proposed suboptimal search
algorithm (ITES) and with the Genetic Algorithm based search
procedure proposed in [7]. The former resulted in a slight
improvement in BER performance than the latter. To have
a fair comparison, both algorithms use the same number of
iterations to generate their results, i.e. we modify the stop
condition of ITES so that it performs 3 iterations, same as GA.
This change in the stop criteria was made only for comparative
purposes. Note that with only 3 iteration ITES achieves a
BER performance close to that obtained with the optimum
exhaustive search, with a very significant lower complexity.
For the considered scenario, the exhaustive search tested all



XXXVI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2018, 16-19 DE SETEMBRO DE 2018, CAMPINA GRANDE, PB

−5 0 5 10 15
10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

B
E

R

Otimum selection NT = 10 and Nta = 6

NT = Nta = 6

NT = Nta = 10

Fig. 2. BER vs. SNR(dB) for transmit antenna selection considering different
number of antennas and RF chains available at BS, NR = 3 and K = 2.
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Fig. 3. BER vs. SNR(dB) for transmit antenna selection with NT = 20,
Nta = 6, NR = 3 and K = 2.

the 38760 possible antenna patterns, while the ITES and GA
tested only 252 each.

In receive antenna selection case, the BS uses all its NT
antennas for transmission and, based on the minimization
of γr, given in (21) and (22), selects the most suitable set
of antennas for receiving data symbols. Fig.4 presents BER
performance curves for a scenario with NT = 10, NR = 4,
Nra = 2 and K = 2, thus yielding a set of Sr = 6 possible
antenna patterns that can be chosen to receive information
symbols. BER curves assuming error-free user notification and
incorporating the proposed notification method were generated
using Monte Carlo simulations, where for each of the NCR =
1000 channel realizations, 1200 data signal vectors followed
by Fnot = 10 notification signal vectors are transmitted to
each user. The coincidence of the BER performance curves
evidences the effectiveness of the adopted notification method.
The results also evidence the high performance gains that
can be obtained with the proposed receive antenna selection
optimization method.
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Fig. 4. BER vs. SNR(dB) for receive antenna selection with NT = 10, Nra

= 2, NR = 4 and K = 2.

VI. CONCLUSIONS

This paper considered a BER minimizing approach to
antenna selection in the downlink of MU-MIMO systems. We
have developed a procedure to obtain the optimal transmit
antenna set when a reduced number of RF chains is available
at the BS. We have also introduced the ITES algorithm, that
significantly reduces the search space and is able to achieve a
BER performance close to the optimum exhaustive search se-
lection. Similarly, a method to perform optimal receive antenna
selection was proposed, and a notification procedure to inform
the BS selections to the users’ receivers was explored. Joint
transmit and receive antenna selection is a natural extension
and is currently in progress.
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