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Energy Map Model for Software-Defined Wireless
Sensor Networks
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Abstract— Wireless sensor networks (WSN) is a technology
commonly used for remote monitoring, tracking and detection
applications. Since energy efficiency is a major concern in WSN,
to know the remaining energy on each node could optimize the
energy consumption. We propose a novel method to create an
energy map for a Software-Defined Wireless Sensor Network
(SDWSN). We implement an energy consumption prediction
model into the controller, which obtains information of each node
and estimates its energy consumption rate. This approach reduces
the node processing overhead and memory usage when compared
to other approach available.

Keywords— Wireless Sensor Networks, Software-Defined Net-
working, energy map.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are formed by inter-
connected nodes that are able to sense characteristics from
the real world, to process this information and to exchange
it with other nodes into the network. These characteristics
make WSN suitable for applications in different areas such
as health, industrial and environmental monitoring, battlefield
and residence surveillance. On the other hand, WSN have im-
portant constraints: low bandwidth, limited processing power
and storage capacity, low communication range and limited
energy [5].

Despite the current advances in Micro-Electro-Mechanical
Systems (MEMS), energy efficiency is still a key problem
in WSN. One of the main reasons is because sensor nodes
depend on batteries to operated. Furthermore, some applica-
tions deployed the WSN in hostile environments where the
maintenance becomes a challenging task. In order to address
such issues, several approaches can be found on the literature.
One approach is to reduce the energy consumption of the
sensor nodes and of the network as a whole [1]. Another
approach is to use the available energy as metric for the
protocol by design, and thus improve the network lifetime.
SPIN [12] and GEAR [24] use remaining energy as routing
metric, while FLEECH [19] and RECHS [3] use energy in the
decision algorithm to select the cluster head.

Besides these approaches, the sink could benefit from
knowing the energy of network, and thus could predict future
failures in the network due to depleted energy, or select the
most adequate set of nodes to execute a given task. Thus, an
energy map is defined as the information of the residual energy
on each part of the network [18].
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The energy map construction has two main steps that are
performed by the sensor nodes. First the node estimates its
energy consumption and remaining energy. Second the node
informs its remaining energy to the node which is in charge to
collect the data to construct the map. The constant execution
of both steps increases the energy consumption, since there
are more tasks related to obtaining the remaining energy
and transmitting this information. Since transmission is the
most energy costly task, one approach to reduce the network
traffic caused by these updates is to use energy consumption
prediction models [18]. One drawback from such approach is
the increase in the processing overhead in the node.

Software Defined Networking (SDN) is a paradigm that
separates the control plane from the data plane. In order to
accomplish this separation, it has a programmable controller
which is in charge of control logic decisions and the network
devices become forwarding devices. This scheme allows the
controller to have a global view of the network, giving
the opportunity to adequate the routing algorithms [16].
McKeown et al. proposed OpenFlow [17] in 2008, the first
southbound protocol to establish communication between an
SDN controller and forwarding devices, focusing on wired
networks.

Applying the SDN paradigm into WSN is known as Soft-
ware Defined Wireless Sensor Networks (SDWSN), and it has
been seen as a solution for inherent problems of the latter.
Energy consumption, network management, mobility, interop-
erability and security are among the fields where SDWSN is
being studied [15]. There are already several proposals in the
literature [15], including TinySDN [20] and SDN-Wise [10].
The SDWSN controller normally runs in a station with higher
processing power and without energy constraints. Some works
require to merge the controller with the sink node [9], while
others consider them different entities [20].

Given the centralized approach in the SDN paradigm, the
network controller use information concerning available en-
ergy to improve route definition, either by using it as a metric
or by using the information to avoid low energy nodes in a
given route. Some SDWSN proposals mention the remaining
energy in the nodes as an important information, but do not
explain how to obtain it. Furthermore, the construction of an
energy map in SDWSN has not been considered yet.

The main contribution from this work is a novel method
to construct an energy map into a SDWSN. We follow the
Markov chain approach proposed by Mini et al. [18], but
instead of running the prediction model on each node, the con-
troller obtain information of each node behavior and estimates
an energy consumption rate to create and constantly update the
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energy map. In that way, by centralizing the estimation we can
reduce the processing overhead and the memory usage in the
sensor nodes.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work, while Section III explains
the mathematics behind the energy consumption prediction
model. Section IV describes the implementation characteris-
tics. Section V shows the performance evaluation results that
are discussed in Section VI. Finally, conclusions and future
work are presented in section VII.

II. RELATED WORK

Different approaches have been explored to estimate the
energy consumption in WSNs and predict the lifetime of the
network. Mini et al. [18] compare three different approaches
to predict the energy consumption and construct the energy
map. The first one is a naive approach, where the node
periodically sends its current energy level to a monitor node.
The second one uses a Markov chain model to forecast
the energy consumption; then the node sends its remaining
energy and the energy consumption rate to the monitor node.
The third approach use an Autoregressive Integrated Moving
Average (ARIMA) model, in which the node calculates the
parameters of the model and then sends its remaining energy
and those parameters to the monitoring node. For the second
and third approach the authors propose an error threshold.
The node calculates the error between the last prediction
sent to the monitor node and the new prediction. If this
error is larger than the threshold, it sends a new message to
update the parameters. The paper compares the accuracy of
the estimation and the traffic overhead of the three approaches.
The energy consumption model for this experiment has four
operational states and the simulation was conducted using the
software NS2. This paper has two main conclusions. First,
the Markov chain and the ARIMA model approaches have a
better energy efficiency than the naive approach. Second, the
Markov chain model produces lower traffic overhead than the
ARIMA model.

Han et al. propose IDSEP [11], which is an intrusion
detection scheme based on energy prediction. Their energy
consumption prediction model is based on Markov chains,
similar to the Markov chain model in [18], but using five
states instead of four. Another difference is that IDSEP runs
the prediction model on the sink instead of on each sensor
node. The model is implemented using NS2.

Peng Hu et al. [13] present a method to predict the energy
level of the WSN based on the Hidden Markov Model (HMM).
The proposal works with four energy level states and has a
training process and a decoding process. The training process
runs to calculate an approximation for the transition matrix
and the emission probabilities. The decoding process runs to
estimate the current state. The paper presents results from the
proposal simulation using NS2.

Shi, Z. S. et al. [23] present an approach based on gen-
eralized stochastic Petri nets (GSPN). The main idea is to
simplify the node behavior in two states: Active and sleep.
The paper presents results from a network simulation and

compares the energy consumption with the prediction obtained
with the model. The simulation was conducted with TinyOS
and Tossim.

Kerasiotis et al. [14] propose a method to predict the battery
lifetime for a WSN platform based on a AA alkaline battery
depletion profile. They show the results of their prediction
method for different load profiles and use the TelosB platform
for the implementation.

Gallucio et al. [10] and Akram et al. [2] propose SDN-
enabled architectures for WSN. Those proposals include the
battery remaining energy as a metric or important information
for its operation. This information is include in the replies for
the topology discovery protocol, but authors do not explain
how such information is obtained.

While there are some SDWSN proposals that regard the
information about remaining energy, the construction energy
map is an issue that has not been considered. In this work
we propose a method to create an energy map in a SDWSN,
using the controller as and then we compare it with a similar
approach used in WSN.

III. ENERGY CONSUMPTION PREDICTION MODEL

Sensor nodes can be modeled as a device with different
states of operation, such as: processing, transmitting, listening,
sensing, and different low power modes. Therefore, it is
possible to model each sensor node as a Markov chain, where
each operation mode can be represented as a state of the
Markov chain.

We define that the relation Xn = i represents a node in a
operation mode i at time-step n, and the probability that the
next state be j can be represented as Pij .

For a Markov chain defined by M states, the probability that
a node in the state i will be in state j after n-step transitions is
given by the Chapman-Kolmogorov equation, and is defined
as:

Pn
ij =

M∑
k=1

P r
ikP

(n−r)
kj for 0 < r < n (1)

For a current state i(X0 = i), the total of time-steps a node
will remain in state s during T time-steps is defined as:

T∑
t=1

P t
is (2)

Then if a node is in state i and Es is the energy dissipated
during one time-step in state s, thus the expected amount of
energy the node will spend in the next T time-step is expressed
in the equation (3):

ET =
M∑
s=1

(
T∑

t=1

P t
is)Es (3)

In a system with M states, the transition probabilities
among all states are represented by a MxM matrix. Thus,
to forecast the energy consumption following the equation
3, the probability P is substituted by the probability matrix.
The 4 states used in our model are: transmitting, listening,
processing, and low power mode.
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IV. IMPLEMENTATION AND SIMULATION

The energy map was implemented and tested using IT-SDN
[4]. IT-SDN is an SDWSN framework based on TinySDN [20].
Its architecture has three components: southbound protocol,
neighbor discovery protocol, and controller discovery protocol.
The southbound protocol defines the communication between
the controller and SDN-enabled devices. The neighbor discov-
ery protocol is in charge of obtaining and maintaining nodes
neighborhood information. The controller discovery protocol
determines a next hop candidate to reach the controller.
Current IT-SDN implementation runs on Contiki 3.0 [7].

Next we describe the prediction model, the two imple-
mented schemes, and the simulation methodology.

A. Prediction model
The prediction model algorithm implemented is depicted in

Figure 1. As the probability matrix depends on the network
behavior, which may change over time, the first step is to
construct a transitions matrix. The transitions matrix has the
information about how many times the node goes from one
state to another, and how many time-steps it remains steady
on each state. Then, using the transitions matrix and the total
transitions counted for a certain period, the node calculates the
probability matrix dividing each row by the total transitions
of each state. The time the node remains constructing the
transitions matrix is defined as a model parameter. Lastly, the
node uses equation 3 to forecast the energy consumption and
to calculate the consumption rate for the time-steps required.
The consumption rate calculated is compared with the last
consumption rate registered, and if the difference is higher than
a limit defined, the program registers the new consumption
rate.

Transitions matrix 

construction

Probability matrix 

calculation

Energy consumption 

forecasting

Forecasting error 

calculation

Error bigger than 

threshold?

Consumption rate 

actualization

YesNo

Fig. 1: Energy consumption prediction model algorithm

In our implementation, we construct the transitions matrix
using Energest [8]. Energest is a Contiki tool designed to count
the time each state remains on. When the node goes from one
state to another, Energest stops the first state timer and starts
the second state timer. We use this information to count the
transitions among all states and the total transitions of each
state.

B. The two implemented schemes

We implement the energy map using two different schemes:
Scheme 1, which is based on previous works; and Scheme 2
that is our proposal. In Scheme 1, each node processes its
own prediction algorithm and sends its consumption rate and
remaining energy to the controller. The controller constructs
the energy map and uses the consumption rate to update it
periodically. In Scheme 2, each node constructs the transitions
matrix, calculates the total transitions for each state, and sends
them and its remaining energy to the controller. With this
information the controller executes the forecasting algorithm
and calculates the consumption rate of each node. Then, it
constructs the energy map and uses the consumption rate to
do periodical updates. For both cases, each node is monitoring
its behavior. When detecting an important change on it, the
node sends an update to the controller, if necessary.

In this manner, Scheme 2 reduces the processing on the
node but sends messages with larger payload than Scheme
1. Since our prediction model uses 4 states and the message
includes the transitions matrix and the total transitions of each
state, the message payload has 80 bytes. On the other hand,
Scheme 1 message payload has 8 bytes.

C. Simulation methodology

The topology used for all experiments is formed by one
controller, one sink, and four sensor nodes; deployed as shown
in Figure 2. Nodes number 3, 4, 5, and 6 are sensor nodes that
send one message to the sink every 60 seconds.

Controller Sink

1 2

4 5 6

3

Fig. 2: Simulations topology

The transitions matrix updates was tested for two different
periods: 10 minutes and 20 minutes. Other parameters are
shown in Table I.

TABLE I: Forecasting simulation parameters

Parameter Value
Forecasting

Time-step 10 ms
Forecasting 100 time-step
Error threshold 5 %

Energy Consumption
Processing (4 MHz) 2,33 mA
Low Power Mode 0,180 mA
Transmitting (0dB) 21,7 mA
Listening 22,8 mA

The simulation experiments were conducted using COOJA
[21] from Contiki 3.0. The platform emulated was TelosB and
the energy consumption calculations are based on the mote
datasheet [6] and the results shown by Prayati et.al [22]. The
main reason to follow Prayati’s work is because it presents
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several information about the TelosB hardware consumption
for different configurations, such as: CPU clock frequency, low
power mode (LPM) operation, and radio module consumption
for different transmission gains.

The Schemes comparison was conducted by analyzing the
energy consumption and the memory space on each sensor
node. The energy consumption is analyzed by the processing
time and the radio usage.

V. RESULTS

Table II shows the memory usage in the sensor node for
three different cases. The first case shows the memory usage
by the IT-SDN enabled-node module and a simple application
which generates the data traffic. The second case shows the
memory usage when adding the prediction model for the
Scheme 1. The last case is when using the prediction model
for the Scheme 2. The results show that using Scheme 2 the
node saves 1,2 kB of memory, which represents 41% of the
prediction model code for Scheme 1.

TABLE II: Code size on the sensor node including IT-SDN
and both energy consumption prediction model schemes

Scheme ROM RAM Total
Memory usage without prediction model 37944 8222 46358

Memory usage for Scheme 1 40556 8474 49246
Memory usage for Scheme 2 39336 8484 48036

Figure 3 and 4 show the results when comparing the energy
consumption for both schemes and update periods. Figure
3a and Figure 3b present the results of processing energy
consumption when updating the transition matrix every 10
minutes and every 20 minutes. In the same manner, Figure 4a
and Figure 4b present the results of the radio module energy
consumption for both periods.

Table III presents the energy balance when comparing both
schemes and for both update periods. The information on
Processing and Radio columns shows the difference of energy
consumption of Scheme 1 and Scheme 2. When the number
is positive, it means that Scheme 2 had a better performance.
When the number is negative, it means that Scheme 1 had a
better performance. The Total column shows the final balance
of each node, following the same signs rule.

TABLE III: Energy consumption balance

Node
ID

10 minutes
update Total

(mJ)

20 minutes
update Total

(mJ)Processing
(mJ)

Radio
(mJ)

Processing
(mJ)

Radio
(mJ)

3 22,71 -10,89 11,82 32,74 -28,02 4,72
4 13,70 -12,19 1,51 32,56 -24,57 7,99
5 21 -19,93 1,07 41,26 -31,07 10,19
6 18,5 -1,04 17,46 34,09 -28,49 5,6

VI. DISCUSSION

The results presented in Section V show that Scheme 2 code
is 41% smaller than Scheme 1 code. By analyzing the memory
space in the TelosB mote (it has 48 KB of ROM and 10 KB of
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Fig. 3: Processing state energy consumption

RAM), the IT-SDN code takes up the 79% of the total ROM
and the 82,2% of the total RAM. Thus, the remaining 21% and
17,8% are available for applications, including the prediction
code. From this point of view, the prediction code reduction
means a 12% more ROM for other applications.

The processing time measurements also show a reduction
when using the Scheme 2. The reduction was around 8% in all
the sensor nodes and for both transition matrix update periods.
This fact, and the low coefficient of variation, give us an
idea that the measurements were poorly affected by the other
processes running on the node. It also shows a low dependency
between the processing time reduction and the node position
in the topology.

In the radio usage case, it increased its energy consumption
in all nodes when using the Scheme 2. This result was expected
due to the great difference in the message payload size. Nodes
3 and 5 were the ones with higher increase on the energy
consumption, since they have to forward messages from node
6 to the controller.

Finally, the energy consumption balance reveals a small
improvement in the sensor node performance when using
Scheme 2. This means that the reduction in the processing
when implementing the Scheme 2 compensates the radio usage
increased. Thus, we were able to decrease the processing
in the node and the memory space, as well as the energy
consumption.

VII. CONCLUSIONS AND FUTURE WORK

In this work we introduce a model to create an energy
map on a SDWSN. This model uses an energy consumption
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 200

 300

 400

 500

 600

 700

 800

3 4 5 6

A
ve

ra
g
e
 e

n
e
rg

y 
co

n
su

m
p
ti

o
n
 in

 m
J

Node ID

Average radio module consumption: 10 minutes period 

Scheme 1
Scheme 2

(a) Average energy consumption using 10
minutes prediction periods

 200

 400

 600

 800

 1000

 1200

 1400

3 4 5 6

A
ve

ra
g
e
 e

n
e
rg

y 
co

n
su

m
p
ti

o
n
 in

 m
J

Node ID

Average radio module consumption: 20 minutes period 

Scheme 1
Scheme 2

(b) Average energy consumption using 20
minutes prediction periods

Fig. 4: Radio module energy consumption

prediction model running in the network controller instead of
running it on each node, as previous works proposed.

The results show that our proposal reduces the processing
time and requires less memory space in the node when
compared to other approach on the literature. A drawback of
the model is the increase of the radio module usage. Even
though, the model achieved a reduction in the overall sensor
node energy consumption.

For future work, we intend to expand the energy consump-
tion model by adding more states and including a battery
model. Our goal is to implement a realistic energy consump-
tion model that to create a reliable energy map could be used
by the controller for different tasks.
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