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On OFDM Systems under WSS-US Channels
Rui F. Vigelis, Brena Kelly S. Lima, and Charles C. Cavalcante

Abstract— Using the assumption that (a) the subcarrier sym-
bols are i.i.d., (b) the interference between OFDM symbols is
negligible, and (c) the WSS-US channel model holds, we (i)
show that the subcarrier response consists of an average of the
frequency domain channel samples, (ii) derive the subcarrier
correlation and its power spectral density, implying that each
subcarrier has same power, (iii) calculate an exact expression
for the ICI power, which is found to have equal value for
all subcarriers, and (iv) show that the two-path spectrum has
the largest ICI for channels with the same maximum Doppler
frequency.

Keywords— Orthogonal frequency division multiplexing
(OFDM), wide-sense stationary–uncorrelated scattering (WSS-
US) channels, intercarrier interference (ICI).

I. INTRODUCTION

Whenever we consider a multicarrier system, the design of
the subcarrier number and spacing is crucial for the avoidance
of interference among the adjacent frequency tones. However,
when the system is time-varying, the desired property of
orthogonality among the different carriers is no longer ensured.

In orthogonal frequency division multiplexing (OFDM)
over time-varying channels, the subcarriers consist of the
average of Nc (the number of sub-carriers) channel samples
in the frequency-domain. Many papers do not consider this
assumption, which have various implications. For example, in
subcarrier estimation problems, the subcarrier correlations are
generally required. In this letter, we make efforts in finding
the subcarrier correlations. As consequence of this average
property, the subcarriers experience a power loss with respect
to the channel power. The remaining power appears as a term
of the intercarrier interference (ICI) power.

For independent and identically distributed (i.i.d.) symbols,
and wide-sense stationary–uncorrelated scattering (WSS-US)
channels, we will show in the sequel the subcarriers experience
the same ICI power level.

Hence, with those implications in mind, we derive an
expression for the ICI power which is more accurate than the
one proposed in [1], [2], [3]. In this sense, our result is an
exact expression for the computation of ICI power in time-
varying OFDM systems. We have also found an upper bound
for the ICI power, and we perform a comparison of the ICI
power for different Doppler spectra.

The rest of the paper is organized as follows. In Section II,
we describe the OFDM system and find the average property.
The computation of the subcarrier correlation is carried out
in Section III. Section IV provides the expression for the
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ICI power, which is derived in the Appendix, and an upper
bound is found for the ICI power. Our conclusions are stated
in Section V.

Notation. In this paper, vectors appear as bold italic letters
and matrices as bold letters. Special matrices which are
constructed with data from other matrices are represented by
uppercase calligraphic letters. Ensemble averages are repre-
sented by an overline on the variable of interest. The (l,m)-
th element of a matrix is represented by (·)l,m and diag(·)
is a diagonal matrix with the elements of the argument. The
operator (·)n returns the n-th element of a vector or its entry
module n, depending on the entry type. Finally, (·)T and
(·)H stand for the transpose and transpose conjugation of the
argument, respectively.

II. OFDM DESCRIPTION

Let a[n] = (a[n, 0], . . . , a[n,Nc − 1])
T be the vector con-

taining the frequency-domain symbols allocated at the Nc sub-
carriers. We assume each symbol a[n, k] has unitary mean
power σ2

a = 1. The OFDM symbol is obtained by a normalized
IDFT (Inverse Discrete Fourier Transform) application to a[n],
and, in the sequel, its cyclic prefix (CP) is added.

Let F = 1/
√
Nc · W be the normalized version of

the Fourier matrix W, whose (k, l)-th entry is given by
ωkl = exp(−j2πkl/Nc). The resulting OFDM symbol is then
serialized and transmitted through the channel.

The received OFDM symbol is constituted by the parallel
version of the received signal. The demodulation procedure
consists of the CP removal and posterior translation to the
frequency-domain by a normalized DFT. With the constraint
that the channel length L is smaller than the CP length Ncp,
i.e, L ≤ Ncp + 1, there is no interference between adjacent
OFDM symbols, and the received signal at the n-th subcarrier
can be written as

x[n] = FHv[n]FHa[n] + n[n]

= Hv[n]a[n] + n[n], (1)

where n[n] is the frequency-domain noise with power
σ2
n, Hv[n] is the time-varying channel matrix, and
Hv[n] = FHv[n]FH . Since the matrix Hv[n] is not circulant,
Hv[n] is no longer diagonal and there is intercarrier interfer-
ence.

In what follows, we will write the diagonal elements of
Hv[n] as a function of the discrete-time channel impulse
response h[m, l], where m and l index time and delay w.r.t.
sample instants. We can easily check

Hv[n] =


hn0,0 hn0,Nc−1 · · · hn0,1
hn1,1 hn1,0 · · · hn1,2

...
...

. . .
...

hnNc−1,Nc−1 hnNc−1,Nc−2 · · · hnNc−1,0

 ,
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where we denote

hnp,l =

{
h[(n− 1)Ns +Ncp + p, l], for 0 ≤ l < L,

0, otherwise,

and Ns = Ncp +Nc is the total OFDM symbol duration. Now
let h[m] = (h[m, 0], . . . , h[m,L− 1], 0, . . . , 0)

T be the Nc×1
vector tailed by Nc−L zeros. With the stated definitions, the
diagonal elements of Hv[n] can be written as

(Hv[n])m,m =
1

Nc

Nc−1∑
p=0

Nc−1∑
k=0

hnp,(p−k)Nc
ωm(p−k)

=
1

Nc

Nc−1∑
p=0

(Wh[(n− 1)Ns +Ncp + p])m

= (Wh[n])m,

where

h[n] =
1

Nc

Nc−1∑
m=0

h[(n− 1)Ns +Ncp +m].

Let C(h[n]) denote the circulant matrix whose entries are
the elements of h[n]. Then we can decompose Hv[n] as

Hv[n] = C(h[n]) + He[n],

where He is an error matrix and such thatHv[n] can be written
as

Hv[n] = diag(Wh[n]) +He[n],

where He[n] = FHe[n]FH . The matrix He[n] constitutes the
pure interference term, since diag(He[n]) = 0.

Now we can insert in Eq. (1) the ICI term u[n] =
He[n]a[n], which results in

x[n] = diag(H[n])a[n] + u[n] + n[n], (2)

where we select H[n] = Wh[n].
In time-varying channels, we can show that the subcarriers

consist of the average of Nc channel samples in frequency-
domain. In the existing literature, this assumption is not
considered in the subcarrier correlation, which causes a con-
siderable impact. This is the task of the next section.

III. SUBCARRIER CORRELATION

The considered channel model is the WSS-US one with a
constant number of paths. In this case, the base-band impulse
response is given by

h[m, l] =
K−1∑
i=0

γi[m]gi[l], (3)

where γi[m] is the complex amplitude of the i-th path, and
gi[l] = g(lTs− τi), where Ts is the sample period and g(τ) is
the shaping filter impulse response that satisfies the Nyquist
criterion. Let E{·} be the expectation operator. The WSS-US
assumption tell us that

E{γ∗i′ [m′]γi[m′ +m]} =

{
ρiri[m], if i′ = i,

0, if i′ 6= i,

where ρi and ri[m] denote the mean power and normalized
correlation of the i-th path, respectively.

From Eq. (3), the channel response in the frequency domain
(subcarriers) can be expanded as

H[n, k] =
L−1∑
l=0

h[n, l]ωkl =
K−1∑
i=0

γi[n]

(
L−1∑
l=0

gi[l]ω
kl

)
, (4)

where we denoted

γi[n] =
1

Nc

Nc−1∑
i=0

γi[(n− 1)Ns +Ncp + i].

With the assumption gi(lTs − τi) ≈ 0, for l 6= 0, . . . , L − 1,
and due to the Nyquist criterion, the term in parentheses in
Eq. (4) can be approximated as

≈
∞∑

l=−∞

g(lTs − τi) exp(−j2πkl/Nc) = exp(−j2πk∆fτi)

(5)
where ∆f = 1/TsNc. Then we have

H[n, k] =
K−1∑
i=0

γi[n] exp(−j2πk∆fτi).

Now we can write the subcarrier correlation as follows

rH [n, k] = E{H∗[n′, k′]H[n′ + n, k′ + k]}

=
K−1∑
i=0

E{γ∗i [n′]γi[n′ + n]} exp(−j2πk∆fτi). (6)

From the expansion of γi[n] in the expectation above, a
straightforward computation shows us

E{γ∗i [n′]γi[n′ + n]} =
ρi
N2
c

Nc−1∑
i1=0

Nc−1∑
i2=0

ri[nNs + i2 − i1]

= κiρiri[n], (7)

where ri[n] is the normalized correlation of γi[n], and we
have defined the normalization factor as

κi =
1

N2
c

Nc−1∑
i1=0

Nc−1∑
i2=0

ri[i2 − i1].

Observe that this factor satisfies 0 ≤ κi ≤ 1 and can be
interpreted as the power loss ratio of the i-th path, since
κi = E |γi[n]|2/ρi. The inclusion of the above definitions in
Eq. (6) results in

rH [n, k] =
K−1∑
i=0

κiρiri[n] exp(−j2πk∆fτi).

Just when all paths have the same correlation function rt[n],
the separability property [4] is valid:

rH [n, k] = κσ2
hrt[n]rf [k],

where we define the normalized frequency correlation

rf [k] =
K−1∑
i=0

ρi
σ2
h

exp(−j2πk∆fτi), σ2
h =

K−1∑
i=0

ρi,
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and observe that all paths have the same factor κ. The channel
power σ2

h is attenuated by the factor κ, such that the sub-carrier
power is given as σ2

H = κσ2
h.

The approximation in Eq. (5) implies the sub-carrier cor-
relation in Eq. (6) does not depend on k′. As consequence,
all subcarriers have same power σH = E |H[n, k]|2. Such ap-
proximation is perfectly reasonable if the interference between
OFDM symbols is negligible. In the ICI power found below,
we used the same kind of approximation.

In what follows, we will find a relationship between the
Fourier transforms of rt[n] and rt[n], which we denote by
pt[n] and pt[n], respectively. Applying the Fourier transform
to rt[n] given in Eq. (7), we obtain

κpt(ν) =
1

N2
c

Nc−1∑
i1,i2=0

∞∑
n=−∞

rt[nNs + i2 − i1] exp(−j2πnν).

The last summation in the above equation is identified as [5]

1

Ns
pt

( ν

Ns

)
exp
(
j2π

i2 − i1
Ns

ν
)

for −1/2 ≤ ν ≤ 1/2, whose substitution implies

κpt(ν) =
1

Ns
pt

( ν

Ns

){ 1

N2
c

Nc−1∑
i1,i2=0

exp
(
j2π

i2 − i1
Ns

ν
)}

.

If the term in the brackets is denoted by mt(ν/Ns), we have

κpt(ν) =
1

Ns
pt

( ν

Ns

)
mt

( ν

Ns

)
, (8)

and further simplifications result in

mt(ν) =
sinc2(Ncν)

sinc2(ν)
. (9)

Eqs. (8) and (9) provide the desired relationship. The function
mt(ν) is even and strictly decreasing in [0, 1/2] with max-
imum mt(0) = 1. Such property justifies the appearance of
the attenuation factor 0 ≤ κ ≤ 1, and shows how the power
spectral density of H[n, k] is attenuated. In addition, the factor
κ can be alternatively expressed as

κ =

∫ 1/2

−1/2
pt(ν)mt(ν)dν. (10)

As we will see in the next section, the remaining power σ2
h−

σ2
H appears as the ICI power.

IV. ICI POWER

Since the transmitted symbols a[n, k] are i.i.d., and so
H[n, k]a[n, k] is uncorrelated from its intercarrier interference,
we have from Eq. (2) for the k-th subcarrier

σ2
x[k] = σ2

Hσ
2
a + σ2

ICI[k]σ2
a + σ2

n

= σ2
H + σ2

ICI[k] + σ2
n,

where σ2
x[k] denotes the power of x[n, k], and σ2

ICI[k] is the
ICI power over the k-th subcarrier.

One could ask if σ2
ICI[k] is the same for all subcarriers. In

fact, it does. In order to find the ICI power, we could calculate
σ2
x[k] and see that the ICI power does not depend on k. We

chose to find σ2
ICI[k] first, since its calculations have shown

to be less tedious and more appropriated for our purpose. As
demonstrated in the Appendix for σ2

a = 1, we have the desired
result

σ2
ICI = σ2

h − σ2
H , (11)

where the index k was omitted. Such result permits to conclude
that the received signal x[n, k] has equal power for all k. Then,
for σ2

a = 1, we can write

σ2
x = σ2

h + σ2
n,

where the index k was omitted again.
The expression in Eq. (11) has broad applicability, since

few premises were assumed. In the derivation of Eq. (11),
only the following assumptions were used: (a) the symbols
a[n, k] are i.i.d., (b) the interference between OFDM symbols
is negligible, and (c) the WSS-US channel model holds.
Additionally, the tapped delay line (TDL) assumption could
be easily suppressed.

In the case the channel paths have the same Doppler
spectrum, we can introduce the factor κ:

σ2
ICI = (1− κ)σ2

h. (12)

The above equation together with Eq. (10) is similar to that
found in [3], except for the use of sinc2(Ncν) in the place of
mt(ν). In [3], an infinite number of subcarriers was regarded,
resulting in an upper bound for the ICI power. In this work,
instead, the expression in Eq. (12) is exact, since we consider
a finite number of interfering subcarriers.

A. Upper Bound for σ2
ICI

In this subsection, we derive an upper bound for σ2
ICI for

certain maximum Doppler frequency νd. From Eq. (12), we
can state that σ2

ICI is maximized when κ is minimized. Then,
from κ defined in Eq. (10), we can write

κ =

∫ νd

−νd
pt(ν)mt(ν)dν

≥
(

min
νd≤ν≤νd

mt(ν)
)
·
∫ νd

−νd
pt(ν)dν = mt(νd),

where we used the fact that mt(ν) in [−νd, νd] is minimized
at ν = νd. Indeed, mt(ν) is concave in [−1/2, 1/2] with
maximum at ν = 0. Therefore, the maximum σ2

ICI is given
by

σ2
ICI,max = [1−mt(νd)]σ

2
h.

This maximum value is attained for the two-path spectrum

pt(ν) =
1

2
[δ(ν + νd) + δ(ν − νd)],

whose corresponding correlation function is

rt[n] = cos(2πνdn).

The two-path spectrum corresponds to an OFDM system with
a fixed offset of Tsνd Hz.

We also consider the classical Jakes spectrum

pt(ν) =


1

πνd

1√
1− (ν/νd)2

, for |ν| < νd,

0, otherwise,
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Fig. 1. Comparison of exact ICI power for two-path, Jakes and uniform
spectra.

and the uniform spectrum

pt(ν) =


1

2νd
, for |ν| < νd,

0, otherwise,

whose correlation functions are

rt[n] = J0(2πνdn), rt[n] = sinc(2νdn),

respectively, where J0(·) is the zeroth-order Bessel function
of the first kind.

Fig. 1 shows the ICI power σ2
ICI as function of the maximum

Doppler frequency νd for the two-path, Jakes and uniform
spectra. We employed the values σ2

h = σ2
a = 1 and Nc = 128.

As previously indicated, the two-path spectrum presents the
largest ICI power.

V. CONCLUSIONS

This letters shows an analytical result to the computation of
the power of the intercarrier interference in OFDM systems
under WSS-US channels. We take into account that the sub-
carriers consist of the average taken over the number of sub-
carriers samples of the channel in frequency-domain. As a
consequence, the sub-carriers have different correlations and
experience a power loss with respect to the channel power. The
used assumptions to derive the result are very usual in practical
systems. The achieved expression has been shown to be more
accurate than the previous one reported in the literature.
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APPENDIX
PROOF OF THE RESULT IN EQ. (11)

If the symbols at the sub-carriers are i.i.d., the ICI power
at the k-th subcarrier is given by

σ2
ICI[k] = E

∣∣∣∣Nc−1∑
i=0

(He[n])kia[n, i]

∣∣∣∣2
=

Nc−1∑
i=0

E |(He[n])ki|2.

Let eml =
(
hnm,(m−l)Nc

− 1
Nc

∑Nc−1
i=0 hni,(m−l)Nc

)
be the

(m, l)-th entry of He[n]. Since the (k, i)-th entry of He[n]
is given by

(He[n])ki =
1

Nc

Nc−1∑
m=0

Nc−1∑
l=0

emlω
km−il,

after some simplifications, we can write

σ2
ICI[k] =

1

Nc

Nc−1∑
l,m1,m2=0

E{e∗m1lem2l}ωk(m2−m1).

The expansion of the summation above in terms of hnm,l and
further simplifications result in

σ2
ICI[k] =

(
1

Nc

Nc−1∑
l,m1,m2=0

E{hn∗m1,(m1−l)Nc
hnm2,(m2−l)Nc

}

· ωk(m2−m1) − E |H[n, k]|2
)
. (13)

Writing hnm2,(m2−l)Nc
as a function of γk[m] and gk[l], the

expectation in Eq. (13) can be expressed as
K−1∑
i=0

ρiri[m2 −m1]g∗i [(m1 − l)Nc
]gi[(m2 − l)Nc

].

Then, for the summation in Eq. (13), we have

1

Nc

K−1∑
i=0

Nc−1∑
l,q=0

ρiri[q]·( ∑
(m2−m1)Nc=q

g∗i [(m1 − l)Nc
]gi[(m2 − l)Nc

]

)
· ωkq. (14)

The last summation above is recognized as the q-th element of
the circular convolution of gi[m] with itself. Since the Fourier
transform of gi[m] is approximated by exp(−j2πk∆fτi), we
have that this convolution is an impulse, i.e., equal to 1, for
q = 0, and 0, otherwise. Then, Eq. (14) results in

1

Nc

K−1∑
i=0

Nc−1∑
l=0

ρiri[0] = σ2
h.

Finally, we obtain the desired result

σ2
ICI = σ2

h − σ2
H ,

where the index k was omitted in σ2
ICI[k], since this term has

the same value for all k.
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