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Abstract— Video monitoring generates large amounts of raw
data from which relevant information can be extracted using
image processing techniques. When these cameras are used
in tolls or for traffic monitoring it is interesting to acquire
characteristics like color, license plate, make and model of the
vehicles passing by. This work proposes the use of a recent class of
deep learning models called MobileNets on the task of retrieving
the make and model information of vehicle images. The usage of
these types of models can lower computational cost and improve
classification accuracy. The CompCars dataset is used to assess
the accuracy of the proposed method on the task of retrieving
cars make and model. Results show an improvement of 2.5% on
the top-1 accuracy if compared to that reported in the extended
CompCars work. Moreover, it is shown that, by means of the
variations of MobileNets architectures, one can obtain the desired
trade-off between complexity (computational cost) and accuracy.
This is an effective approach to set up the system to match the
application’s requirements.
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I. INTRODUCTION

Surveillance cameras are being used in many applications
for monitoring human behavior. In streets and public roads,
cameras are on tolls or for traffic monitoring, for example.
These are scenarios on which they extract images that contain
the raw data about the vehicles that are circulating. Through
the usage of image processing techniques, characteristics of
the vehicles like make and model, color, license plate can be
extracted. This information can be used for many purposes in
intelligent transportation systems. For example, from the visual
identity of the vehicle, obtained by means of the combination
of the extracted features, one can verify the vehicle against an
expected identity and check for vehicle cloning or appearance
changes. Also, by automatically detecting vehicle make and
model, it is possible to index them in parking systems.

In order to select the relevant information, deep neural
networks (DNNs) are standing out in relation to other image
processing methods. By using a recent class of DNNs called
MobileNets [1] this research aims to improve the recognition
accuracy and lower the computational load of the make and
model classification task proposed by [2] on the CompCars
dataset created in that same work.

The rest of the paper is organized as follows. First, the
related literature is reviewed. Next, the materials and methods
of how the research was conducted are explained in the
approach section. After that, the experiments and results are
listed and explained, and finally, the article is concluded.

II. RELATED WORK

Several methods have been proposed to classify the vehicle
make and model from images. We can organize them into part-
based methods and global methods. Part-based methods try to
infer the make and model from distinctive vehicle parts, such
as the logo, model name, and headlights, which must first be
segmented from the full image. Global methods, on the other
hand, are segmentation-free and calculate features of the entire
vehicle encoding vehicle silhouette and texture.

Llorca et al. [3] proposed a method to recognize the vehi-
cle logo. They use an Automatic License Plate Recognition
(ALPR) system to first find the license plate location, and
then they assume that the logo is located above it. This
area is searched by means of a sliding window approach
generating many regions that are described by Histogram of
Gradients (HOG) and classified by a linear Support Vector
Machine (SVM). The authors also extend the research to
try to find vehicle models [4]. In that paper, they limit the
model search to only those of the previously recognized brand.
Geometric constraints and HOG are used to describe the
regions containing the model name, which are then classified.

Another work that tries to recognize vehicle logos is Huang
et al. [5] that also use an ALPR system to first locate the
license plate. Then they assume that the vehicle logo is located
above it. After that a coarse segmentation of the region is
extracted and classified with a convolutional neural network,
assuming that the classifier is translation invariant.

Note that by using parts of the vehicles for identification as
the described methods, if the segmentation step of the region of
interest does not work, the prediction will likely be erroneous.
The following methods use entire information of the vehicle
avoiding this problem.

Sochor et al. [6], automatically extract 3D bounding boxes
of vehicles from surveillance images. These 3D boxes allow
them to identify side, roof, and front/rear side of vehicles.
This information is used to create a normalized image of the
vehicle which, together with the encoded 3D bounding box and
the encoded viewpoints are used as inputs to a convolutional
neural network, that classifies the vehicle.

Nazemi et al. [7] proposed a system to classify 10 classes
of make and model. From a frontal image of the vehicle,
which can be in different viewpoints, they extract the position
of the vehicle by classifying image patches with an SVM
and HOG searching by the existence or not of a vehicle in
each patch. Next, they join the positive patches into a region
containing the vehicle, from which they extract features that
should be invariant to illumination changes, viewpoint, and
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noise. They use the densely sampled scale invariant feature
transform (SIFT) [8] features that are encoded with sparse
feature coding techniques based on Bag of Words(BOW) to
describe the image and then an SVM is used to classify them.

Yang et al. [2] proposed a dataset with sufficient proportions
for training DNNs called CompCars, in which there is a se-
lected collection of images used for fine-grained classification
of vehicle make and model. For this task, in an extension of the
article available on arxiv [9] they open-sourced a model called
GoogLeNet cars and it can predict 431 classes of vehicle make
and models from entire images containing the vehicles.

III. APPROACH

In this paper, we show that the classification accuracy on the
CompCars fine-grained task in recognizing vehicle make and
model can be improved while lowering computational costs
by using the so-called MobileNets. When compared with the
result of the fine-tuned GoogLeNet(GoogLeNet cars) model
described in [9].

The CompCars dataset contains two types of vehicles im-
ages: web-nature that are images collected from forums, public
websites, and search engines; and surveillance-nature images
collected from surveillance cameras. In particular, the web-
nature set contains 163 car makes with 1716 car models,
with a total of 136726 images. These pictures contain the
entire vehicles in various viewpoints and inserted into different
backgrounds. For the fine-grained classification task, these
makes and models were combined into a subset of 431 make-
model classes, with vehicles of the same model type but
produced in different years assigned to same class. This subset
contains 52083 images and is divided into 70% ( 36456
images) for training, referenced hereinafter as CompTrain, and
30% (15627) for testing, referenced hereinafter as CompTest.
Examples of images from this dataset can be viewed in figure
1.

Fig. 1. Sample images from CompCars dataset [2]. Images were obtained
from the web and depict vehicles under various viewpoints.

GoogLeNet cars is a GoogLeNet [10] model that was fine-
tuned on the CompTrain set. Meaning that first the network
GoogLeNet was trained on ImageNet [11], then by using the
pre-trained weights as an initialization and a lower learning
rate this model is trained on the CompTrain set. This proce-
dure, called fine-tuning, is normally used to save power and
computational resources. The original GoogLeNet network
contains approximately 1.59x109 multiply-add operations and

replaces the standard fully-connected layers at the end with a
simple global average pooling that reduces the total number
of parameters compared to other networks. We have chosen
to compare with this model, first because the database is
available, second because the model is open sourced, which
allowed us to test it locally and validate the result of [9] and
third because this was the only model found, that followed the
same approach and had comparable results when this research
was conducted.

In this work, we propose the use of MobileNets [1] on the
CompCars task. They are a recent class of convolutional neural
networks that, by means of depthwise separable convolutions,
achieve lower computational cost during inference. Depthwise
separable convolutions are a form of factorized convolutions;
they separate the filtering and the combining operations of the
standard convolutions. First, the depthwise convolution applies
a single filter to each input channel. Then the pointwise filter,
by applying a 1x1 convolution, combines the outputs. These
models already have a reduced number of parameters, but
hoping to have even faster models, Howard et al. [1] propose
two values, width multiplier and resolution multiplier, that can
be further tuned so that the user can choose networks with
even smaller sizes, though at the cost of reduced accuracy.
They have open-sourced 16 models pre-trained on ImageNet,
obtained by sweeping these two parameters. The network
trained on ImageNet with the highest accuracy uses resolution
of 224 by 224 pixels and width multiplier of 1.0 and has
approximately 569x106 multiply-add operations.

IV. FINE-TUNING

To fine-tune the proposed models we implemented the train-
ing process in Python using the Keras [12] framework with the
Tensorflow [13] back-end. What motivated these choices was
the ease-of-use of the Keras application programming interface
and because the pre-trained MobileNet models were available
for Tensorflow. For each pre-trained model we used, the last
layer was replaced to reflect the number of expected classes.
The MobileNet architecture we used, with width multiplier of
1.0 and input size of 224 by 224, can be seen in Table I.

To continue training a Keras model an image generator
was built to open, pre-process, and provide the images of the
CompTrain dataset to the model. To augment the dataset and
mitigate the model overfitting on the data the images used
during training are first resized to 256 by 256 pixels and then
randomly cropped to 224 by 224 pixels. A random horizontal
flip was also used for additional data augmentation. Finally, the
generator is responsible for delivering the number of samples
expected to fit the memory of the used hardware. The batch
size contains 32 images that are sampled cyclically from the
CompTrain set.

The training was made during 71 epochs (one epoch means
sampling at every sample at least once from the dataset).
This number was chosen because the GoogLeNet cars model,
according to the available solver, was trained with the Caffe
[14] framework during 10000 iterations with 256 images for
each iteration, that is approximately 70.22 epochs on the
CompTrain set, which was rounded to 71 as the generator
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TABLE I
SIMPLIFIED MOBILENET 1.0 224 ARCHITECTURE USED TO FINE-TUNE ON

COMPCARS, WHERE CONV MEANS CONVOLUTION, S1 AND S2 ARE THE

STRIDES SIZES AND DW MEANS DEPTHWISE TYPE. NOTE THAT THE

LAYERS IN BOLD WERE REPLACED FOR THE FINE-TUNING PROCESS.

Type/Stride Filter Shape Input Size
conv/s2 3 x 3 x 3 x 32 224 x 224 x 3

Conv dw/s1 3 x 3 x 32 dw 112 x 112 x 32
Conv/s1 1 x 1 x 32 x 64 112 x 112 x 32

Conv dw/s2 3 x 3 x 64 dw 112 x 112 x 64
Conv/s1 1 x 1 x 64 x 128 56 x 56 x 64

Conv dw/s1 3 x 3 x 128 dw 56 x 56 x 128
Conv/s1 1 x 1 x 128 x 128 56 x 56 x 128

conv dw/s2 3 x 3 x 128 dw 56 x 56 x 128
Conv/s1 1 x 1 x 128 x 256 56 x 56 x 128

Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256

Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv / s1 1 x 1 x 256 x 512 14 x 14 x 256

5x Conv dw / s1
Conv / s1

3 x 3 x 512 dw
1 x 1 x 512 x 512

14 x 14 x 512
14 x 14 x 512

Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512
Conv / s1 1 x 1 x 512 x 1024 7 x 7 x 512

Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024
Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024

GlobalAveragePooling2D Pool 7 x 7 7 x 7 x 1024
FC / s1 1024 x 431 1 x 1 x 1024
Softmax Classifier 1 x 1 x 431

needs an integer number of epochs. The learning rate schedule
starts at 0.002 and after the middle of the training it is dropped
to 0.0002. This value was chosen based on the batch size
and so that the model started to learn right away. We used
Stochastic Gradient Descent with a momentum of 0.9, which
is the same optimizer used for training GoogLeNet cars in [9].
A diagram detailing the process of fine-tuning can be seen in
figure 2.

V. EXPERIMENTS AND RESULTS

We performed seven tests to examine the results of some of
the available models and inspect the influence of the different
parameters. The metric used to compare the results was the
accuracy (the number of right predictions divided by the
total amount of samples). Where we consider in top 1 if the
prediction with the highest probability was correct and on top 5
if the correct prediction is listed on the 5 highest probabilities.
First, the input resolution of the MobileNets models was set
to 224 by 244 and the width multiplier was changed from 1.0
to 0.25 in steps of 0.25. The results are listed in Table II. Note
that the accuracy drops as expected when a smaller model is
used. Also, the MobileNet-1.00-224 model has 2.5% higher
accuracy than GoogLeNet cars while using fewer parameters.
But compared with the results of the article of MobileNet
[1] the drop in accuracy was lower than the one reported on
ImageNet, possibly because the CompCars dataset has fewer
classes and fewer images than ImageNet.

We then experimented with different values for the resolu-
tion multiplier while keeping the width multiplier set to 1.0.
The input resolutions used were 224 by 224, 192 by 192, 160
by 160 and 128 by 128. To train these networks a secondary
change was needed: since the original resized resolution was

MobileNet fine-tuned to classify 
make and model

Train model on the CompCars 
dataset using a lower learning rate.

Append new ending layers
matching the number of make

and model classes.

Remove the last layers

MobileNet trained on ImageNet

The Fine-tune Process

Fig. 2. Diagram detailing the fine-tuning process. Note that we do not train
the model from the beginning, we start from the pre-trained weights.

256 by 256 pixels for the 224 by 224 cropped input, the
input was proportionally resized for the smaller resolutions.
The results are listed in Table III. The recall drops faster than
it did for width parameter presumably because, as the image
gets smaller, information like the logo of the vehicle loses
resolution and becomes more blurred, making the classification
rely more on the silhouette of the vehicle. Figure 3 resumes
the results of all the fine-tuned models.

During the analysis of the highest accuracy model
(MobileNet-1.00-224) we checked the mistakes made to verify
if the model errors were making sense. We list in the Table IV
the 3 classes that were most commonly mistaken. We notice
that normally the mistakes occur between the same make but
end up having the wrong models. The first two mistakes occur
by the difference between the sedan and hatchback versions, it
seems that the model struggles into differentiating the back of
the car maybe because during training, some vehicle viewpoint
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TABLE II
TESTS SWEEPING THE WIDTH MULTIPLIER PARAMETER OF THE

FINE-TUNED MOBILENET AND COMPARING THE RESULT WITH

GOOGLENET CARS. NOTE THAT THE RECALL DROPS AS THE NETWORK

GETS SMALLER AND THAT MOBILENETS CAN ACHIEVE BETTER RESULTS

ON THE SAME DATASET.

Model Accuracy TOP 1 Accuracy TOP 5
GoogLeNet cars 91.2% 98.1%

MobileNet 1.00 224 93.7% 98.8%
MobileNet 0.75 224 92.2% 98.4%
MobileNet 0.50 224 89.8% 97.8%
MobileNet 0.25 224 79.5% 94.7%

TABLE III
TESTS SWEEPING THE RESOLUTION MULTIPLIER PARAMETER OF THE

MOBILENET TO COMPARE WITH GOOGLENET CARS. NOTE THAT THE

RECALL DROPS ARE GREATER THAN IT WAS FOR THE WIDTH PARAMETER.

Model Accuracy TOP 1 Accuracy TOP 5
GoogLeNet cars 91.2% 98.1%

MobileNet 1.00 224 93.7% 98.8%
MobileNet 1.00 192 92.5% 98.5%
MobileNet 1.00 160 83.9% 95.6%
MobileNet 1.00 128 54.2% 76.7%

isn’t available and the model can’t generalize for this expected
position. For the third mistake, analyzing the images of the
dataset, we can view that for these two different classes there
are vehicles that are visually similar and probably the DNN
model isn’t differentiating the nuances. Figure 4 contains
samples of the misclassified images and its similar vehicle
models on the misclassified class.

To also know the approximated inference time in a known
embedded platform, we built Tensorflow for a Raspberry Pi 3
Model B that features 1 GB of RAM and a Quad Core 1.2Ghz
ARM Cortex A53 CPU. By using the same Keras framework
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Fig. 3. Results of the fine-tuned models for the CompCars dataset. The
plot presents Top-1 accuracy versus the number of multiply-add operations
used during inference. The size ot the circles represent the number of
parameters of each network. Some configurations of the MobileNets clearly
overcomes GoogleLeNet cars on this task, presenting even higher accuracy
for a considerable lower number of multiply-add operations.

TABLE IV
TO CHECK WHAT COULD BE MADE TO IMPROVE PREDICTION WE LISTED

THE MOST COMMON MISTAKES MADE BY MOBILENET-1.00-224 MODEL.

Ground Truth Predicted Num. Mistakes
Ford-New Focus Sedan Ford-New Focus Hatchback 11
BAW-E Series Sedan BAW-E Series Hatchback 8

Volvo-V40 Volvo-S40 8

Fig. 4. Left: images that the MobileNet-1.00-224 model misclassified. Right:
similar vehicle models encountered on the misclassified class.

we made a sample of 500 images and used the fine-tuned
models to infer their classes. The time of each inference was
kept and at the end of the process, a mean time was calculated.
The results are shown in Table V. We note that by using only
the CPU the best accuracy model takes almost one second to
predict one image. Also, changing the width multiplier reduces
more the number of parameters, as can be viewed on figure
3, and by consequence, it has a greater impact over reducing
inference time than by varying the resolution multiplier.

TABLE V
TO KNOW THE APPROXIMATED INFERENCE TIME ON AN EMBEDDED

PLATFORM WE USED A RASPBERRY PI 3 MODEL B HARDWARE. THIS

TABLE SHOWS THE MEAN TIME OF THE PREDICTION OF 500 RANDOMLY

SAMPLED IMAGES FOR EACH FINETUNED MODEL.

Model Mean Inference Time (ms)
MobileNet 1.00 224 846
MobileNet 0.75 224 796
MobileNet 0.50 224 490
MobileNet 0.25 224 282
MobileNet 1.00 192 793
MobileNet 1.00 160 613
MobileNet 1.00 128 443

VI. CONCLUSIONS

The goal of this research was to evaluate the MobileNets
convolution neural networks on the CompCars vehicle make
and model classification task. To validate if it could, even with
a lower number of parameters, achieve better results on the
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same task when compared with GoogLeNet cars. By using
the fine-tuning process described, it is possible to achieve
2.5% higher accuracy on the same task by using the best
MobileNet configuration. Also, by sacrificing some accuracy,
faster configurations like MobileNet-1.00-192 or MobileNet-
0.75-224 are available, which are still slightly better than
GoogLeNet cars on the same task. Further work can be done
on training the network; since no hyperparameter optimization
was performed, better results might be achieved with different
configurations like changing the optimizer or varying the
learning rate.
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