Construção e Análise de Desempenho de uma Classe de Códigos LDPC Irregulares e Estruturados Definidos sobre Campos Finitos de Inteiros

Pâmela Joyce Silva Melo Dantas e Renato Baldini Filho

Resumo— Este artigo apresenta um método de construção e analise de desempenho de uma classe de códigos LDPC (*Low Density Parity Check*) irregulares estruturados definidos sobre os campos finitos de inteiros Z_p , sendo p um número primo maior que 2. A constelação da modulação PSK (*phase-shift keying*) pária é utilizada como base para a alocação dos símbolos de Z_p . O desempenho destes códigos LDPC é avaliado em um canal perturbado por ruído aditivo gaussiano branco.

Palavras-Chave—Códigos LDPC não binário, Códigos LDPC sobre campos de inteiros finitos.

Abstract—This paper presents a method of construction and performance analysis of a class of irregular structured LDPC codes (Low Density Parity Check) defined over a finite integer field Z_p , where p is a prime number greater than 2. The symbols of Z_p . are mapped to the symbols of a p-ary PSK (Phase -shift keying) constellation. The performance of those LDPC codes is evaluated on an additive white Gaussian noise channel.

Keywords— non-binary LDPC codes, LDPC defined over finite fields of interger.

I. INTRODUÇÃO

Códigos LDPC binários são códigos de bloco lineares longos construídos através da concepção de uma matriz de verificação de paridade **H** esparsa (quantidade de 1's nas linhas e colunas muito pequena quando comparado à quantidade de 0's). Estes códigos associados a um método de decodificação iterativa podem alcançar um desempenho perto do limite ideal de Shannon sobre o canal com ruído gaussiano branco aditivo (*additive white gaussian noise - AWGN*)[1].

É bem conhecido que para melhorar o desempenho da taxa de erro de bit (*bit error rate - BER*) de um processo de codificação/descodificação binário é necessário diminuir a taxa de codificação do código, ou de forma equivalente, aumentar o número de bits de redundância da palavra código. Entretanto, existe outra maneira de aumentar a eficiência do processo de codificação/decodificação sem aumentar o comprimento da palavra código. Isto pode ser feito aumentando-se o tamanho do alfabeto utilizado na definição do código.

Códigos LDPC não binários, definidos sobre anéis ou campos (corpos) de inteiros finitos, são candidatos naturais a

este papel de alternativa aos códigos LDPC binários. Além disso, estes códigos LDPC apresentam algumas características interessantes, tais como: o perfeito casamento com os símbolos da modulação *p*-PSK e podem ser feitos facilmente invariantes a rotações de fase da portadora.

Este artigo apresenta um método de construção de uma classe de códigos LDPC definidos sobre campos finitos Z_p , onde p é um número primo maior que 2. Os símbolos de Z_p são mapeados nos símbolos da modulação p-PSK.

Em geral, os códigos de LDPC podem ser definidos como códigos regulares ou irregulares. Um código LDPC é regular, se os pesos de Hamming de todas as linhas e de todas as colunas na sua matriz **H** de verificação de paridade são iguais, respectivamente. Caso contrário, o código é denominado irregular. Os códigos LDPC irregulares apresentam melhor desempenho do que os seus equivalentes regulares [2].

O desempenho dos códigos LDPC propostos são obtidos por simulação de Monte Carlo em um canal com ruído aditivo gaussiano branco (AWGN) e comparados com seus equivalentes binários.

Os algoritmos de decodificação iterativos para códigos LDPC são delimitados por um compromisso entre o desempenho, em termos de taxa de erro de bit (*BER*), e a sua complexidade de decodificação. Além disso, o desempenho do código LDPC varia de acordo com o comprimento das palavras código e o tipo de estrutura da sua matriz de verificação de paridade. O algoritmo de decodificação iterativo utilizado neste artigo é o algoritmo soma-produto (SP) que alcança o melhor desempenho, embora exija uma complexidade mais elevada de implementação.

II. CONSTRUÇÃO DE CÓDIGOS LDPC SOBRE Z_P

Os códigos (n, k) LDPC binários, irregulares e estruturados (IE) são construídos utilizando uma matriz de verificação de paridade **H** de dimensões (n-k, n), onde $n \in k$ são o comprimento da palavra código $\mathbf{c} = (c_1, c_2, ..., c_n)$ e o do vetor de informação $\mathbf{u} = (u_1, u_2, ..., u_k)$, respectivamente. Esta matriz **H** é gerada pelo agrupamento de submatrizes circulantes de dimensão $m \le n-k$ [3],[4]. Submatrizes circulantes são geradas por deslocamentos cíclicos à direita

Pâmela J. S. M. Dantas e Renato Baldini Filho, Departamento de Comunicações, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas-SP. E-mails: pamela@decom.fee.unicamp.br, baldini@decom.fee.unicamp.br. Este trabalho foi parcialmente financiado pela CAPES.

das colunas de uma matriz identidade I_m de ordem m [5]. O deslocamento das colunas da submatriz circulante em relação a matriz identidade I_m é definida por um número primo menor que m. Isto permite que a matriz H gerada não tenha *girths* pequenos.

A Figura 1 mostra dois exemplos de submatrizes circulantes $C_{\delta,j}$, obtida a partir da matriz de identidade I_{δ} . O índice *j* indica o deslocamento inicial para a direita da primeira linha da matriz de identidade.

	1	0	0	0	0	0	0	0		0	0	0	1	0	0	0	0		0	0	0	0	0	1	0	0
	0	1	0	0	0	0	0	0		0	0	0	0	1	0	0	0		0	0	0	0	0	0	1	0
	0	0	1	0	0	0	0	0		0	0	0	0	0	1	0	0		0	0	0	0	0	0	0	1
1 =	0	0	0	1	0	0	0	0	С =	0	0	0	0	0	0	1	0	С =	1	0	0	0	0	0	0	0
.8	0	0	0	0	1	0	0	0	- 8,3	0	0	0	0	0	0	0	1	- 8,5	0	1	0	0	0	0	0	0
	0	0	0	0	0	1	0	0		1	0	0	0	0	0	0	0		0	0	1	0	0	0	0	0
	0	0	0	0	0	0	1	0		0	1	0	0	0	0	0	0		0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	1		0	0	1	0	0	0	0	0		0	0	0	0	1	0	0	0

Fig.1 Submatrizes circulantes obtidas a partir I8.

Códigos LDPC irregulares estruturados definidos sobre campos finitos de inteiros Z_p são construídos de maneira análoga aos binários, a diferença está nas submatrizes circulantes que, apesar de serem geradas por deslocamentos cíclicos da matriz identidade, são multiplicadas por um símbolo do campo Z_p .

A Figura 2 mostra um exemplo simples de geração de uma matriz $\mathbf{H}(32, 16)$ para um código estruturado irregular definido sobre o campo Z_5 . A matriz $\mathbf{H} = [\mathbf{I} | \mathbf{P}]$ está na forma sistemática, onde \mathbf{P} é a submatriz de paridade construída por agrupamento de quatro submatrizes $C_{m,j}^{x}$ circulantes definidas por quatro elementos primos *j*, sem repetição, do conjunto de números primos $N_p = \{2, 3, 5, 7\}$ menores que m = 8 e $x \in Z_5$. Esta matriz \mathbf{H} proporciona um rápido processo de codificação, o que reduz a complexidade de decodificação [3].

$$\mathbf{H} = \begin{bmatrix} \mathbf{I}_{16} & & C_{8,2}^1 & C_{8,3}^3 \\ & C_{8,5}^2 & C_{8,7}^2 \end{bmatrix}$$

	_		
	$1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	00100000	00030000
H =	0100000000000000000	00010000	00003000
	0010000000000000000	00001000	00000300
	0001000000000000000	00000100	00000030
	0000100000000000000	00000010	00000003
	0000010000000000000	00000001	30000000
	000000100000000000	$1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	03000000
	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	01000000	00300000
	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	00000200	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 2$
	00000000001000000	00000020	$2\ 0\ 0\ 0\ 0\ 0\ 0\ 0$
	000000000000100000	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 2$	02000000
	000000000000010000	$2\ 0\ 0\ 0\ 0\ 0\ 0\ 0$	00200000
	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0$	02000000	00020000
	000000000000000000000000000000000000000	00200000	00002000
	000000000000000000000000000000000000000	00020000	00000200
	$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1$	$0\ 0\ 0\ 0\ 2\ 0\ 0\ 0$	00000020

Fig. 2 Matriz H (32,16) código LDPC não binário irregular estruturado para um campo $Z_{5}. \label{eq:2.1}$

Note que existem outras maneiras de estruturar a submatriz **P** através do agrupamento de submatrizes $C_{m,j}^{i}$ utilizando diferentes valores para *m*.

A matriz geradora $\mathbf{G} = \begin{bmatrix} -\mathbf{P}^T & \mathbf{I} \end{bmatrix}$ do código LDPC é obtida através da matriz de verificação de paridade **H** na sua forma sistemática, onde o expoente *T* significa transposta.

Cada um dos símbolos codificados c_i pertencente a Z_p é associado a um dos sinais *p*-PSK dados pela equação

$$s_i(t) = A \exp j\left(\frac{2\pi}{p}c_i + \varphi\right) \tag{1}$$

onde $A = \sqrt{E_s}$ é a amplitude do sinal de modulação, E_s é a energia deste sinal e φ é uma fase aleatória da modulação. Para efeitos de análise de desempenho dos códigos, sem perda de generalização, esta fase φ é feita igual a zero.

A Figura 3 apresenta dois exemplos de modulação *p*-PSK utilizadas para transmitir os códigos LDPC definidos sobre campos não binários [6]. Como geralmente a saída da fonte de informação é binária, seus bits são mapeados em símbolos de Z_p utilizando codificação de Gray. A codificação de Gray associada à modulação minimiza a probabilidade de erro de bit no processo de decodificação, pois um erro em um símbolo de informação para seu adjacente produz um único bit errado. O mapeamento da sequência binária (representada entre parênteses) em símbolos de Z_p é apresentado para as modulações 3-PSK e 5-PSK. Note que alguns símbolos de Z_p não possuem bits atribuídos. Estes símbolos são usados apenas como redundância no processo de codificação [7].

Fig. 3 Modulação *p*-PSK, p = 3 e 5, com mape
amento de binário para Z_p utilizando código de Gray.

Note que, devido ao mapeamento de Gray das sequências binárias da fonte em símbolos do campo Z_p , um ou mais símbolos de Z_p não são gerados na entrada no codificador, mas são utilizados na geração dos símbolos de paridade. Então, na entrada do codificador temos q (uma potência de 2 imediatamente menor que número primo p) possibilidades de símbolos a cada instante. Assim, podemos definir a taxa R_c de codificação de um código LDPC (n, k) irregular estruturado sobre Z_p por

$$R_c = \frac{\log q^k}{\log q^k + \log p^{n-k}} = \frac{k \log q}{k \log q + (n-k) \log p}.$$
 (2)

O processo de decodificação iterativo é baseado numa generalização do algoritmo soma-produto binário para operar com símbolos de Z_p . A diferença é que a cada transição de um nó de paridade para um nó de variável e vice-versa, existe uma probabilidade associada para cada elemento de Z_p . No final de uma iteração, uma possível palavra de código $\hat{\mathbf{c}}$ é estimada e a sua síndrome é avaliada. Se a síndrome é nula a palavra código estimada $\hat{\mathbf{c}}$ é decodificada. Caso contrário, os passos vertical e horizontal do algoritmo são repetidos. O processo é interrompido, quando uma palavra de código é detectada, ou quando o número máximo de iterações é alcançado.

III. MODELO DO SISTEMA DE COMUNICAÇÃO

A Figura 4 apresenta o modelo de comunicação utilizado para analisar o desempenho dos códigos LDPC irregulares estruturados sistemáticos construídos sobre campos de inteiros finitos Z_p . A sequência de informação **u** *q*-ária é modulada por um modulador *q*-PSK e enviada ao canal, sendo que ao mesmo tempo, ela é codificada por um código LDPC onde só a parte de paridade **p** *p*-ária é gerada e modulada por um modulador *p*-PSK, que em seguida, é concatenada a **u**.

Por exemplo, para p = 5, os símbolos de informação são mapeados na modulação 4-PSK e os símbolos de paridade na modulação 5-PSK, dessa forma, obtemos um melhor desempenho dos códigos LDPC sobre Z_5 .

Fig. 4 Diagrama de Blocos do Modelo de Comunicação utilizado para avaliar o desempenho dos Códigos LDPC *p*-ário.

A sequência **r** formada pela justaposição de **u** e **p** somada ao ruído **w**, chega ao receptor, onde é decodificada iterativamente e uma estimação $\hat{\mathbf{u}}$ da sequência de informação é obtida e entregue ao usuário.

IV. RESULTADOS

Nesta seção é apresentada uma análise comparativa do desempenho de códigos LDPC-IE definidos sobre Z_3 e Z_5 , em relação aos códigos LDPC-IE binários equivalentes. Foram utilizadas matrizes de verificação de paridade dos códigos para comprimentos n = 500 e n = 1000 símbolos e dimensões m = (n-k)/2 e m = (n-k)/5, o limite no número de iterações para a decodificação iterativa foi fixado em 5, as simulações foram feitas em um canal AWGN.

A Figura 5 mostra o desempenho, em termos de taxa de erro de bit (*BER*) pela razão energia de bit (E_b) pela densidade

espectral de potência unilateral de ruído (N_0), dos códigos LDPC-IE binário, sobre Z_3 e sobre Z_5 . Os dois primeiros códigos possuem n = 1000 e k = 500 símbolos e a dimensão das submatrizes circulantes igual a 250. O código LDPC-IE definido sobre Z_5 possui n = 500 e k = 250 símbolos e dimensão das submatrizes circulantes igual a 125. Estes parâmetros foram escolhidos para que os três códigos sejam equivalentes.

A matriz **H** (500, 250), gerada a partir de submatrizes $C_{125,j}^i$ para o código LDPC-IE sobre Z_5 , é definida da seguinte maneira:

$$\mathbf{H} = \begin{bmatrix} \mathbf{I}_{250} & C_{125,2}^1 & C_{125,3}^3 \\ C_{125,5}^3 & C_{125,7}^1 \end{bmatrix}.$$
(3)

Enquanto que a matriz **H** para o código LDPC-IE (1000, 500) sobre Z_3 é gerada utilizando submatrizes circulantes $C_{250,i}^i$,

$$\mathbf{H} = \begin{bmatrix} \mathbf{I}_{500} & \begin{bmatrix} C_{250,2}^1 & C_{250,3}^1 \\ C_{250,5}^1 & C_{250,7}^1 \end{bmatrix}.$$
 (4)

O desempenho do código LDPC-IE definido sobre Z_5 para uma *BER* igual a 5×10⁻⁵, apresenta E_b/N_0 , em torno de 1 dB pior que o código binário equivalente. Enquanto que, o código LDPC-IE definido sobre Z_3 , para uma *BER* igual a 3×10⁻³, tem um desempenho em termos de *Eb/N*₀ de 3,5 dB pior que o equivalente binário.

Fig. 5 Desempenho dos códigos LDPC-IE (500, 250, 125) para código Z_5 e LDPC-IE (1000, 500, 250) para o código binário e Z_3 .

A Figura 6 apresenta uma comparação de desempenho dos códigos LDPC-IE equivalentes binário, definido sobre Z_3 e sobre Z_3 . A matriz de verificação de paridade **H** do código LDPC-IE (500, 250) definido sobre Z_5 é gerada a partir de submatrizes circulantes de dimensão 50. As matrizes **H** dos códigos LDPC-IE (1000, 500) binário e definido sobre Z_3 são geradas a partir de submatrizes circulantes de dimensão igual a 100. Note que o desempenho do código LDPC-IE definido sobre Z_5 se torna melhor que o equivalente binário a partir de uma *BER* igual a 6×10⁻⁴.

Fig. 6 Desempenho dos códigos LDPC-IE (500, 250, 50) para código Z_5 e LDPC-IE (1000, 500, 100) para o código binário e Z_3 .

Note que, em ambas as Figuras 5 e 6, o desempenho do código LDPC-IE definido sobre Z_3 não apresenta desempenho melhor que seu binário equivalente. Entretanto, à medida que o número de submatrizes circulantes aumenta na matriz **H**, o código definido sobre Z_3 se aproxima do binário equivalente. Esta aproximação é mais evidente para a constelação Z_5 .

V. CONCLUSÃO

Neste artigo apresentamos um método de construção de códigos LDPC-IE definidos sobre campos finitos de inteiros e uma análise do desempenho desses códigos com relação aos códigos LDPC binários equivalentes.

Dentre os códigos LDPC-IE analisados, o que apresentou melhor desempenho em comparação com o código LDPC binário equivalente foi o código definido sobre o campo Z_5 LDPC-IE (500, 250) gerado a partir de submatrizes circulantes de ordem igual a 50. Isso se deve ao fato de que

quanto menor a ordem das submatrizes, maior é o número de submatrizes e consequentemente maior é a quantidade de elementos não nulos por linha e coluna, dessa forma, a quantidade de nós de variavel e nós de paridade aumentam. Entretanto, o processo de decodificação do códigos LDPC não binários apresentam uma complexidade maior devido ao maior número de operações que eles realizam. Por outro lado, os códigos LDPC-IE definidos sobre Z_5 apresentam menor comprimento das palavras código que seus equivalentes binários. Assim, os códigos LDPC definidos sobre campos finitos de inteiros podem ser uma alternativa aos códigos binários.

REFERÊNCIAS

- Shannon, C. E., A Mathematical Theory of Communications. BSTJ, 27:379-423, Sep. 1948.
- [2] Richardson, T. J. and Urbanke R. L., "The capacity of low-density paritycheck codes under message-passing decoding", IEEE Trans. Inf. Theory, vol. 47, pp. 559-618, Feb. 2001.
- [3] Jobes, M., A VLSI Architecture and the FPGA Implementation for multirate LDPC Decoding, MSc thesis, Mcmaster University, 2009.
- [4] Karkooti, M., Semi-Parallel Architectures for Real-Time LDPC Coding, MSC thesis, rice University, 2004.
- [5] de Lucena, A. U. A Study on VHDL Implementation of a Class of Irregular Structured LDPC Codes applied to 100 GBPS Optical Networks, 7th Latin American Workshop on Communications – Arequipa-Peru, 2015.
- [6] Baldini F., R. and Farrell P. G., "Coded modulation based on rings of integers modulo-q, Part I: block codes", IEE Proc.-Commun., vol. 141, no. 3, pp. 129–136, Jun.1994.
- [7] Dantas, P. J. S. M. Códigos LDPC definidos sobre corpos de inteiros finitos, Dissertação de Mestrado, Unicamp, Campinas, 2014.
- [8] Sridhara and Fuja T. E., "LDPC codes over rings for PSK modulation", IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3209-3220, Sep. 2005.
- [9] Ryan, W. E. and Lin., S., *Channel Codes Classical and Modern*. Cambridge University Press, 2009.