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Rewriting the Partial Order Permutation Entropy
Using Partially Commutative Monoids

Andresso da Silva and Francisco M. de Assis

Abstract— Permutation entropy is a popular complexity mea-
sure for time series based on the distribution of ordinal patterns
defined over a totally ordered alphabet. The extension to partially
ordered alphabets, known as Partially Ordered Permutation
Entropy (POPE), allows analysis of data where only a partial
order between symbols exists, broadening the applicability of
the method. However, the lack of a known formula to enumerate
equivalence classes under partial order has prevented the defi-
nition of a normalized entropy in this setting. In this work, we
reinterpret POPE through the algebraic framework of partially
commutative monoids, which naturally model commutativity
relations among symbols via a graph structure. This approach
enables the explicit calculation of the number of equivalence
classes (generalized ordinal patterns) of length L as a function of
the commutativity graph. Leveraging these results, we introduce a
normalized version of the partially ordered permutation entropy,
allowing for a meaningful complexity measure comparable across
different systems.

Keywords— Entropy, Partial Order, Partially Commutative
Monoid, Complexity.

I. INTRODUCTION

Permutation entropy, originally introduced by Bandt and
Pompe [1], is a widely used complexity measure for time series
that captures the temporal structure of signals by analyzing
the distribution of ordinal patterns. One of its key strengths is
its simplicity and robustness to noise, making it suitable for
a variety of practical applications [2], [3], [4]. However, the
classical definition assumes a totally ordered alphabet, which
limits its applicability in contexts where such an order is not
naturally defined or is overly restrictive.

To address this limitation, Haruna [5] proposed a generaliza-
tion known as Partially Ordered Permutation Entropy (POPE),
which extends the concept of permutation entropy to settings
where elements of the alphabet are partially ordered. While
this extension allows a more flexible analysis of symbolic data,
it introduces significant combinatorial challenges, particularly
in enumerating the number of distinct ordinal patterns under a
partial order. As a consequence, unlike in the totally ordered
case, a normalized entropy has not been defined in this
generalized setting.

This paper addresses that gap by reinterpreting partially
ordered permutation entropy using the algebraic framework
of partially commutative monoids. These monoids naturally
encode concurrent behavior and partial order through a com-
mutativity graph, where symbols that can be permuted without

Andresso da Silva, Department of Electrical Engineering, Federal
University of Campina Grande, Campina Grande - PB, e-mail: an-
dresso.silva@ee.ufcg.edu.br; Francisco M. de Assis, Department of Electrical
Engineering, Federal University of Campina Grande, Campina Grande - PB,
e-mail: fmarcos@dee.ufcg.edu.br. This work was partially support by CNPq
(under Grant 311680/2022-4 and Grant 140327/2023-1).

affecting equivalence are connected. By establishing a corre-
spondence between equivalence classes of words and ordinal
patterns under partial order, we show that each subsequence in
a time series can be associated with a class in the monoid. It
is worth noting that Li [6] has recently presented results con-
cerning Shannon entropy in the context of ordered monoids.
Although these results are related to the present work, ordered
monoids are distinct from partially commutative monoids, and
POPE is not considered in Li’s analysis.

The main contributions of this article are twofold: (i) we
show that POPE can be reinterpreted in terms of partially
commutative monoids, and (ii) we define a normalized entropy
measure for partially ordered alphabets, made possible by
the combinatorial enumeration of equivalence classes. This
formalization not only provides a clearer understanding of the
underlying structures involved in POPE but also extends its
applicability to a broader class of systems, including those
with concurrency and partial temporal relationships.

The remainder of the article is organized as follows: Sec-
tion II presents the necessary background on permutation
entropy and its generalization to partial orders, introduces
the theory of partially commutative monoids and describes
how these structures model partial orderings and equivalence
classes. In Section III, we establish the connection between
POPE and the partially commutative monoid framework and
derive the formula for normalized POPE. Finally, Section IV
presents concluding remarks and outlines directions for future
research.

II. DEFINITIONS AND KNOWN RESULTS

In this section, we introduce the notation and preliminary
results that form the foundation for the main developments
of this work. We begin by defining fundamental concepts
related to finite alphabets, partially commutative monoids,
and commutativity graphs, which are essential for the rein-
terpretation of partial order permutation entropy. We then
revisit classical results concerning the number of equivalence
classes in partially commutative monoids, highlighting their
connection with dependency polynomials and combinatorial
structures such as heaps of pieces. These elements will provide
the necessary support for the contributions presented in the
following sections.

Let > be a finite alphabet. The set X*, called the free
monoid over X, consists of all finite words formed from the
elements of ¥, including the empty word e. The subset X"
contains all words of length n over the alphabet 3.

The concept of a partially ordered set (POSET) plays a
central role in this work and is defined as follows.
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Definition 1: POSET A partially ordered set (POSET) is a
par P = (P, =) such that P is a set and =< is binary relation
which is

1) reflexive (x < « for all x € P)

2) anti-symmetric (if x <y and y < x then z = y)

3) transitive (if x < y and y < z, then x <X 2z for all

z,y,z € P)

A POSET can be represented in matrix form by constructing
its adjacency matrix, which encodes the partial order relations
among its elements.

Definition 2 (Adjacency Matrix): Given a finite POSET
(P, <), with |P| = n, we define an n x n binary matrix M
such that M;; = 1 if and only if the element z; = x; in the
POSET.

Let M,,({0,1}) denote the set of all binary matrices of
order n, that is, all n X n natrices whose entries belong to the
set {0,1}. The adjacency matrices of the POSET belong to
this set, M € M,,({0,1}).

A. Permutation Entropy

The permutation entropy was introduced by Bandt and
Pompe [1] as a measure of time series complexity. It is
robust to noise, simple to compute, and invariant to certain
transformations. Due to these properties, permutation entropy
has been applied in a wide range of domains.

The permutation entropy is defined based on the statisti-
cal properties of ordinal patterns extracted from time series
data. These ordinal patterns encode the temporal relationships
between neighboring elements in the sequence.

Definition 3: (Ordinal Pattern [7]) Given a real valued
vector X = (1, ...,x) € RL where x; # x; if i = j, then
the ordinal pattern 7(x) is permutation of

(771,7T2,...,7TL) (1)

where {m;}L, = {1,2,..
T; < Tj.

Since no repetitions are allowed, the number of ordinal
patterns is L!, corresponding to the number of allowed permu-
tations. Fig.1 shows a graphical representation of the patterns
for L = 3.

.,L} and m; < m; if and only if

(0,1,2) 0,2,1) (1,0,2) (1,2,0) (2,0,1) (2,1,0)

Fig. 1: Example of ordinal patterns for L = 3. There are
L! = 6 patterns in total.

Given a sequence x = {z1,...,Z,}, the permutation
entropy is computed based on its subsequences. A sliding
window of size n — L + 1 is defined to traverse x, producing
L overlapping subsequences of the form

T L = (Thy Thp1s -+ > T (L-1)); 2

where Kk =1,2,...,n— L+ 1.

The probability of an ordinal pattern is given by its fre-
quency among the n — L 4 1 subsequences, that is,

N(m, x)
P = o
where N(7,x) enotes the number of occurrences of the
ordinal pattern 7 among the subsequences xj ; of x for
k=1,2,...,n— L+ 1. The probability p(w) thus represents
the best empirical estimate of the ordinal pattern distribution
in the finite sequence [1]. Based on the distribution of ordinal
patterns, the permutation entropy can be defined.
Definition 4 (Permutation Entropy [1]):

H(L) =~ p(m)logp(n) “

The maximum value of H (L) is attained when p(7) follows

a uniform distribution, where p(7) = 1/L! and H(L) =

log L!, in such a way that 0 < H(L) < log L!. It is sometimes

convenient to normalize the value of H(L) so that it can

be interpreted as a measure of complexity. The normalized
permutation entropy is therefore defined as

A=

Since 0 < H(L) < 1, a process with H(L) = 0 can be
interpreted as exhibiting low complexity, whereas H(L) = 1
indicates maximum complexity.

3)

®)

B. Partially Ordered Permutation Entropy

The permutation entropy is a measure based on ordinal
patterns, which can be interpreted as being defined over an al-
phabet with a total order. Partially ordered permutation entropy
extends this concept by allowing a partial order among the
elements of the alphabet. This generalization was introduced
by Haruna [5], and the results presented in this section are
based on that work and related developments [5], [8], [9].

A characteristic of sequences defined over partially ordered
alphabets is that multiple equivalent sequences can exist,
unlike in the totally ordered case where each sequence has a
unique representation. To address this ambiguity and enable
the definition of entropy, Haruna [5] proposed a mapping
that transforms sequences into a matrix representation of the
POSET induced by the sequence. This map is defined in Eq. 6.

¢% B = Mp({0,1}) (6)

The function ¢35, ; maps each sequence xy, 1 € Ytoa
square matrix M € My ({0,1}) representing the partial order
induced by the sequence. Here xj, s, is defined as before (see
Eq. 2), but now a partial order is assumed among the elements
of the sequence x = (z1, ..., x1,), where each x; belongs to a
finite alphabet 3.

In this context, the matrix M encodes the equivalent of
the permutation type m(xy, ) under the partial order setting.
Definition 5 introduces the entropy measure. Although two
entropy variants are defined in [5], we shall focus on the one
given below.

Definition 5: (Partially Ordered Permutation Entropy [5,
p-3]) Let X be a stochastic process over a partially ordered



XLII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025, SEPTEMBER 29TH TO OCTOBER 2ND, NATAL, RN

finite alphabet . For any M € My ({0,1}), the probably of
its occurrence in X is given by

ps(M) = >

$k,L€(¢%,L)71(M)

p(zk.1) (7

and the square partially ordered permutation entropy of X is

given by
H; (X ) = Z
MeMyg({0,1})

It is important to note that the definition of probability in
Eq. 7 does not require the alphabet to be totally ordered.
When the alphabet is totally ordered, the definition of partially
ordered permutation entropy coincides with that of standard
permutation entropy.

In contrast to permutation entropy, no normalized version
of partially ordered permutation entropy has been formally
defined in the literature. This absence is primarily attributed to
the combinatorial complexity involved in counting the number
of distinct length-L sequences under a partial order.

ps(M) 10g2 ps(M) (8)

C. Fartially Commutative Monoid

Partially commutative monoids generalize free monoids
by allowing certain pairs of symbols to commute[10].
Mazurkiewicz [11] used partially commutative monoids to
analyze concurrent systems through sequential representations
known as traces. In these representations, symbols corre-
sponding to processes that can be executed in parallel are
allowed to commute, meaning their order can be interchanged
without affecting the system’s behavior. In contrast, processes
that cannot be executed concurrently are represented by non-
commuting symbols, preserving their relative order in all
equivalent traces.

A natural way to represent symbols and their commutativity
relations is through a graph structure. The commutativity graph
G = (V,E) is a simple undirected graph where V is the
set of vertices and FE is the set of edges. Each vertex in V'
corresponds to a unique symbol from a finite alphabet X, via
a bijective mapping. Therefore, without loss of generality, the
sets V and ¥ are treated interchangeably throughout this work.

If two symbols z,y € ¥ commute, then the corresponding
vertices x,y € V are connected by an edge (x,y) € E in the
commutativity graph. This commutativity relation is denoted
by xy =g yz, indicating that the zy is equivalent to yx with
respect to the graph G. Conversely, if z and y do not commute,
the relation is represented by zy g yx.

In this context, two vertices are said to be adjacent if
they are connected by an edge. The complement of the
commutativity graph, denoted by G = (V, E), is called the
non-commutativity graph. In this graph, an edge between
two vertices indicates that the corresponding symbols do not
commute.

Swapping the positions of consecutive symbols that com-
mute results in equivalent words. Two words u,v € ¥* are
equivalent under the relation =¢ if one can be obtained from
the other by a finite sequence of such swaps, where each
swap involves adjacent symbols that commute according to
the commutativity graph G.

Definition 6 (Equivalence Class): Let Eg(u) be the set of
words equivalent to a word u € X", according to the relation
=¢. The set Eg(u) is called the equivalence class of u.

The partially commutative monoid M (X, G) is the set
of all equivalence classes defined by the alphabet ¥ and
the commutativity relations represented by the commutativity
graph G. If two words belong to the same equivalence class,
they are said to be congruent.

The value 7¢(n) represents the total number of distinct
equivalence classes £(u;) of words u;,i = 1,2,...,7g(n)
of length of n, where no two words in the same class are
congruent under the relation =5. We can then define

MM(E,G) =Eq(u) UEg(uz) U - Ue(urgmy) 9

the subset of the monoid M(X, G) consisting of these equiv-
alence classes formed exclusively by words of length n and
where Eq(u;) N Eg(u;) = 0 for i # j, |w| = n,i =
1,2,...,7¢(n) and 7¢(n) = |IM"™ (2, G)|.

Fisher [12] has developed methods for determining the
number 7¢(n) of equivalence classes of length n. The main
tool for determining 7¢(n) is the dependence polynomial of
a commutativity graph G [13].

Definition 7: (Dependence Polynomial [13]) The depen-
dence polynomial of the commutativity graph G is defined
by

D(G,z2) = Z(—l)kckzk, (10)

k=0
where ¢ denotes the number cliques of size k in the graph G
and w is the clique number of G.

It should be emphasized that computing the dependence
polynomial D(G, z) is NP-complete, as this task depends on
determining the coefficients ¢y, which is itself an NP-complete
problem. From the dependence polynomial, it is possible to
compute the value of 7¢(n) by using

1 > N
DG = ;Tg(n)z .

The 1/D(G, z) polynomial captures the growth behavior of
the number of non-equivalent words and provides a compact
representation for 7¢(n) across different values of n.

The concept of heap of pieces, introduced by Viennot [14],
provides a combinatorial and geometric representation of
words in partially commutative monoids. In this model, a
heap is a configuration of labeled pieces stacked according to
certain constraints that reflect the non-commutativity between
symbols: two pieces can be stacked independently if their
corresponding labels commute, otherwise one must be placed
above the other. This construction naturally gives rise to a
POSET, where the elements correspond to the pieces and the
order relation reflects the required precedence imposed by non-
commutativity.

Definition 8 (Heap of Pieces [14]): Let (X,X) be a
POSET and let G = (V,E) be a commutativity graph. A
labeled heap of pieces is a triple (X, <, ), where (X, <) is
the POSET and ) is a function that maps X to the elements
of V, such that

(1)
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1) For every x,y € ¥ such that A(z)A(y) Z¢ A(y)A(x), it

holds that either x < y or y < x; and

2) The relation = is the transitive closure of the relations

defined in item 1.

In this way, each word can be naturally associated with a
POSET derived from its heap representation. A characteristic
of equivalence classes is that all elements of the same class
have the same POSET representation [14, Lemma 4]. In
the next section, this correspondence will be leveraged to
reformulate the partially ordered permutation entropy in the
framework of partially commutative monoids. By exploiting
the combinatorial structure and algebraic properties of these
monoids, new insights and results concerning the entropy of
sequences with partial order constraints will be established.

III. REWRITING PARTIALLY ORDERED PERMUTATION
ENTROPY

The fundamental principle that allows the definition of
partially ordered permutation entropy on a subsequence . r,
is the use of the mapping ¢35 ; (see Eq. 6), which associates
the subsequence with a matrix representing the corresponding
POSET. This matrix encodes the order relations among the
elements of the subsequence. As a result, all subsequences
that are mapped to the same matrix by ¢5, ; are considered
equivalent and belong to the same partition class within the
sequence space.

Similarly, the elements of an equivalence class are mapped
to the same POSET when the sequence is represented as a
heap of pieces (X, <, \). Therefore, it becomes evident that
the mapping function ¢5, ; effectively captures this structure
by assigning each sequence to the POSET associated with its
corresponding heap of pieces representation. Therefore, the
subsequence 1, = {%k, Tk+1,- -, Trt+L—1} defined over an
alphabet X equipped with a partial order, can be interpreted as
a word in the partially commutative monoid M (X, G), where
G encodes the commutativity relations between z; and z;.

This interpretation provides a natural framework for incor-
porating partial order constraints into the symbolic represen-
tation of sequences. In this way, the equivalence classes in the
partially commutative monoid naturally generalize the concept
of ordinal patterns, being equivalent to the image of the map
¢35, 1» which associates each sequence to its corresponding
poset structure.

Now that it is established that the equivalence classes in
the partially commutative monoid M (X, G) generalize ordinal
patterns, it becomes possible to determine the number of
distinct classes of a given length L using Eq. 11. Since
D(G, z) depends directly on the commutativity graph G,
the topological and combinatorial properties of G play a
fundamental role in determining the combinatorial complexity
of the system.

Furthermore, the definition of partially ordered permutation
entropy can be reformulated using the notation of partially
commutative monoids. In this context, each subsequence xy, 1,
interpreted as a representative of an equivalence class &; in
the monoid M(3, ). In this way we rewrite Eq. 7 and Eq. 8
as
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pa(&)= > plzkr) 12)
Tk, L EE;
and
T (L)
Ho(L)=— Y pa(&)log, pa(E:). (13)
=1

The entropy H(L) is then computed over the distribution
of these equivalence classes, rather than over individual ordinal
patterns, capturing the combinatorial structure imposed by the
partial commutativity of the alphabet.

As expected, the minimum value of H¢ (L) is zero, obtained
when the sequence is completely deterministic. However,
unlike the definition in Eq. 8, the current formulation allows
for the explicit computation of the maximum value of Hg (L),
which is achieved when there is a uniform distribution over
the equivalence classes, i.e.,

pc(&i) = :

76(L)
Using Eq. 14 and Eq. 13, we can write that the maximum
entropy is given by

(14)

TG(L)
1
He, (L) = = ; D B e 1
= 10g2 TG(L)7 (16)

where 7 (L) denotes the number of equivalence classes
of words of length L in the partially commutative monoid
M(E,G).

Now that it is possible to determine the total number of
distinct classes 7¢(L) we can define the normalized entropy

as
FG( L) = M

logy 76 (L)

This normalization ensures that 0 < Hg(L) < 1, allowing
the values of to be interpreted as a relative measure of the
combinatorial complexity of the process.

Example 1 (Total Order): For the case of an alphabet with
total order, the commutativity graph has no edges, so ¢; = |X|,
cg = c3 = ... = 0. Then the dependence polynomial will be
D(G,z) =1— ||z and 7¢(L) = |3|*.

Example 2 (Complete Partial Order): If all the symbols in
the alphabet commute, the commutativity graph G is called
complete, meaning that every pair of distinct vertices is
connected by an edge. In this case, all symbols can be freely
reordered, and the partially commutative monoid becomes
isomorphic to the free commutative monoid over Y. For a
complete graph with the dependence polynomial is

D(G,z) = (1)

A
(V) ==
k=0

wa(n) = (F1 ),

corresponding to the number of multisets of size |L| over an
|2|-element set.

a7

1=

and 7 (L) is

19)
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IV. CONCLUSIONS

In this work, we revisited the definition of partially ordered
permutation entropy by interpreting it through the algebraic
framework of partially commutative monoids. By establishing
a formal correspondence between the ordinal patterns induced
by partial order and the equivalence classes in the monoid
M(E,G), we provided a new structural understanding of the
entropy associated with such patterns.

This interpretation enabled the explicit computation of the
number of equivalence classes of a given length, which was
not directly addressed in previous definitions. As a result, we
introduced a normalized version of partially ordered permuta-
tion entropy, overcoming a known limitation in the literature
related to the absence of normalization due to the difficulty of
enumerating distinct patterns under partial order.

These contributions provide a solid combinatorial foun-
dation for the analysis of systems with partial order and
open new directions for applying permutation-based com-
plexity measures in domains where total order assumptions
are not suitable. Future work may explore computational
optimizations for counting classes and investigate applications
of the normalized entropy in real-world systems involving
concurrency or symbolic representations with inherent partial
order.
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