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A Time-Varying Approach for the Blind Source
Separation of Linear Quadratic Mixtures
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Abstract— This paper evaluates nonlinear blind source separa-
tion (NLBSS) methods by interpreting the linear-quadratic (LQ)
model over a time-varying local linear approximation. Two com-
plementary approaches are explored: decomposing LQ mixtures
via local linear approximations and explicitly reformulating them
as time-varying system. Simulations validate the method under
three scenarios: single-trial separation, Monte Carlo analysis with
random matrices, and robustness tests across nonlinearity levels.
Results highlight the N-EASI-R algorithm’s superior performance
for all quadratic terms tested. The study proposes whether
combining both strategies could enhance robustness, potentially
bridging theory and practical BSS applications.

Keywords— Blind source separation, linear quadratic, nonlinear
mixtures, independent component analysis, nonlinear regression.

I. INTRODUCTION

Source separation is an important challenge in signal process-
ing, involving the recovery of individual signals from mixed
observations without prior knowledge of the mixing process.
It arises in many contexts, when sensors capture overlapping
signals due to physical constraints (e.g., microphone arrays in
noisy environments [1]) or inherent signal interactions (e.g.,
spectral overlap in hyperspectral imaging [2]). The lack of
mixing process information, whether due to sensor limitations
or dynamic environments, motivates the development of robust
BSS algorithms adaptable to diverse real-world conditions.

The classical approach to BSS assumes that the observed
signals are linear mixtures, allowing separation methods to
rely on solutions that leverage statistical independence, time
correlation, or spectral properties [3]. However, many real-
world systems exhibit nonlinear mixing behavior, leading to
ineffective linear approaches. Due to the diversity of nonlin-
earities, no universal model exists, where tailored solutions for
specific mixing characteristics become necessary.

There are cases where, although the standard independence
criteria may fail, they can still be used in constrained nonlinear
models such as the Linear-Quadratic (LQ) model [4]. It
can be shown that, despite the nonlinear mixing process,
the statistical independence of the sources alone remains
sufficient for separation under certain conditions. It has practical
significance in applications where signal interactions exhibit
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mild nonlinearities, such as scanned document processing [5]
and chemical sensing [6].

While the independence criterion remains applicable to LQ,
alternatives continue to be explored. A notable advancement in
nonlinear BSS was proposed by Ehsandoust et al. (2017) [7],
who demonstrated that time-invariant nonlinear mixtures can
be reformulated as linear time-varying models through a
local approximation, enabling the usage of adaptive separation
algorithms (Fig. 1). Their work introduced an algorithm with
promising results for certain nonlinear mappings, though
the LQ case was not explicitly tested. Building on this,
another work further investigated the framework, reporting
improved performance under specific conditions. Simulations
showed that the usage of a nonlinear regression algorithm
can improve the source estimation even when applied without
the local approximation when the model can be framed as
time-varying [8].

These works suggest that the LQ model could be evaluated
from a time-varying mixture perspective, offering new insights
into its separation conditions. As a nonlinear model, the LQ
mixture may benefit from two distinct yet complementary ap-
proaches: leveraging local linear approximations to decompose
the mixture, and explicitly reformulating the LQ equations
as a time-varying system. Each approach relies on different
assumptions, as local approximation methods may require
smooth nonlinearities, while the time-varying interpretation
could exploit temporal structure in the mixing process and
potentially lead to distinct separation strategies.

This work investigates these assumptions through simu-
lated scenarios, assessing their effectiveness in separating
LQ mixtures and is organized as follows: In Section II,
we provide an overview of the nonlinear source separation
problem formulation and its interpretation as a time-varying
local linear approximation, presenting the algorithms studied
and applied under this framework. Section III details the LQ
model formulation, emphasizing its interpretation as a time-
varying linear system. Section IV presents simulation results
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Fig. 1: Transforming the nonlinear BSS problem model to the linear
time-variant one [7].
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across three scenarios: (i) a single LQ separation trial, (ii) a
Monte Carlo analysis with random mixing matrices, and (iii) an
evaluation of algorithm robustness under varying nonlinearity
levels (controlled by quadratic terms), and finally Section V
presents the concluding remarks.

II. NONLINEAR BLIND SOURCE SEPARATION

The general Nonlinear Blind Source Separation (NLBSS)
model can be expressed as

x(t) = £(s(t)), (1)

where s(t) = [s1(t),...,sn(t)]T is the set of N observed
source signals, f(.) is a nonlinear mapping, and x(¢t) =
[#1(t), ..., 2a7(t)] T is resulting M observations of the nonlinear
mixtures [3]. In an ideal scenario, separation involves finding
g(.) = f71(.) to recover sources estimates y(t) as

y(t) = g(x(t)). (2)

Challenges arise due to the diversity of nonlinear functions,
making a universal separation algorithm difficult.

A possible approach is to approximate the nonlinear model
(1) as a time-varying linear model [7]. Under the assumption of
time invariance in f(.), the mixing process reduces to a constant
nonlinear mapping between sources and observed mixtures. If
sources are time-varying, it is possible to consider that the
nonlinear characteristics observed in the mixture are related
to how the sources are being affected by different regions
of the nonlinear mapping. Assuming f(.) is smooth and time
invariant, the nonlinear model can be reinterpreted as [7]:

3)

where J¢(s) is the Jacobian matrix, with X and § as time
derivatives, and separation as

x = Jgy(s)s,

4)

where Jg.; is the separation function Jacobian. For correct
signal recovery, the following assumption must hold [7]: (i)
invertibility of f with time-invariance and memorylessness
otherwise the Jacobian would also vary; (ii) first-order differ-
entiability of f and x with continuous derivatives; and (iii)
Independent Component Analysis (ICA) constraints [3] (source-
observation dimension matching, independent derivatives, and
non-Gaussianity of all but one derivative).

¥ = Jgu(x)%,

A. Equivariant Adaptive Separation via Independence

The interpretation of the nonlinear model as time-varying lin-
ear demands an adaptive approach. N-EASI (Normalized Equiv-
ariant Adaptive Separation via Independence) algorithm [9],
is an adaptive BSS method that leverages source statistical
independence, to estimate the time-varying separation matrix
for linear mixtures. The algorithm employs adaptive serial
updates for the separation matrix W (t), given as

YOy~ T
AT Ay Oy (0
h(y()y ()" — y(t)h(y(t))!
W N0 T RO

W(t+1) = W(t) — \

+

where \; is a sequence of positive adaptation steps and h(-)
is an arbitrary component-wise nonlinear function.

The N-EASI algorithm is used throughout this work as the
main adaptive ICA algorithm for the implementation of all
algorithms, since they rely on an adaptive ICA method.

B. Adaptive Algorithm for Time-Variant Linear mixtures

Following the proposed linear time-varying model (Fig. 1), a
first approach to the problem is to apply an adaptive separation
algorithm over the observed mixture signal derivatives to
estimate Jg.;. The estimated Jacobians are used to separate the
mixed signal derivatives, leading to source derivative estimates,
where a final integration step is necessary to recover the sources.
The described procedure is called the Adaptive Algorithm for
Time-Variant Linear (AATVL) mixtures [7] and the algorithm
steps are illustrated in Fig. 2.
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Fig. 2: AATVL algorithm block diagram.

AATVL assumes that the ICA algorithm will be able to
follow Jg.; variations to properly separate the sources.

C. Batch Algorithm for Time-Invariant Nonlinear mixtures

Although AATVL can be seen as an immediate approach
to this model, it does not fully exploit the time-invariance
and smoothness of the mixing function. As the ICA algorithm
iterates, it is expected that new estimates of Jg.; could be
used to estimate the overall mapping. This means that previous
estimated Jg.; may benefit of a regression step to approximate
the nonlinear function. In this sense the Batch algorithm for
time-invariant (BATIN) mixtures adds a nonlinear regression
step after the adaptive separation algorithm to refine Jg
estimates. The BATIN algorithm is illustrated in Fig. 3.
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Fig. 3: BATIN algorithm block diagram.

Considering results presented in previous work [8], the
General Regression Neural Networks (GRNN) [10] is chosen
for the nonlinear regression step. In the context of the BATIN
algorithm, the GRNN formulation can be written as

S [Teunlis K (3, %)
Jg(x)]ij; =
[Je(x)] ST

where, [Jg.1]i; is the ij coefficient of the separating Jacobian
matrix estimates, K (x,xy) is a radial basis function kernel.

; (6)

D. N-EASI with a regression step

The adaptive characteristic of the N-EASI algorithm makes
it applicable in a time-varying scenario assuming its capability
to adapt to a new sample will be able to track the time-varying
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separation matrix, as already used on the AATVL and BATIN
algorithms.

Interesting results over the direct application of the N-EASI
to nonlinear mixtures are shown in [8] when the model can be
written as a time-varying linear mixture. Differently from the
model on Fig. 1, if the nonlinear model can be seen directly

as time-varying, the local approximation may be overlooked.

Also, the fact that the nonlinear mapping depend on the
sources reveals that a nonlinear regression step can also benefit
the separation matrices estimates. The work in [8] applies a
nonlinear regression step (the GRNN from equation (6)) to
refine the separation matrix estimates from N-EASI, similar
to the BATIN algorithm but without derivative and integration
steps, improving source estimation in some cases.

As to be shown in the following section, the LQ model can
be written as time-varying source-dependent and may benefit
from this approach, justifying the application of a nonlinear
regression step over the N-EASI estimates, and the resulting
algorithm is referred as N-EASI-R.

ITII. THE LINEAR-QUADRATIC MODEL
The general form of LQ mixture model can support any
number of sources and mixtures. For the specific case of
two sources/two mixtures case, the observed signals can be
expressed by the following equation system as [4]:

{Il(t) = ansl(t) + algsg(t) + blsl(t)SQ(t),
Z'Q(t) = aglsl(t) -+ a2282(t) + bzsl(t)SQ(t).

The quadratic term can be interpreted as a third source,
allowing the model (7) to be alternatively described through
the following vector notation [11] as a linear mixing model as:

(7

x(t) = As(t), ®
s1(t)
a1 a2 by = So
A= |:a21 a22 b2], S0 = 81(t)it2)(t) 7 ”

where A is the matrix with the coefficients defined in (7)
and s(t) is an augmented source vector. One might rewrite
the dynamics for the mixing matrices by incorporation the
quadratic terms to the coefficients of the matrix, making it

source dependent as in:
z1(¢) _ e a2+ bis1(t)| [s1(t)
xa(t) a1 aga + basi(t)| |s2(t)
From equation (10), although this might not be the only way
to express it, it is possible to consider that the mixing matrix
can be seen as time-varying, since it depends on the sources,
that are also time-varying, but its relation to the sources remain
linear as in:

(10)

x(t) = A¢(s)s(t) . (11)

This reinterpretation naturally leads to the question of
whether adaptive algorithms can effectively recover sources
under such conditions (i.e. N-EASI and N-EASI-R). While
the LQ model fundamentally represents a nonlinear system,
and the performance of local approximation methods in this
context (i.e. AATVL and BATIN) remains underexplored in
existing literature.

IV. SIMULATION RESULTS

To test the different approaches described in Section II on the
separation task of the LQ mixing model, a simple simulation
setup of two sources and two observations (N = M = 2)
was designed. The source data was generated synthetically
according to the sine and triangle derivative models used in
in [8] considering w = 1/100, with 5000 samples each.

Regarding the LQ mixing process, three simulation scenarios
were considered: the first one examining a single experiment
with an arbitrary mixing matrix; a second scenario considering
the average separation performance for randomly selected
mixing matrices; and a third, examining the influence of the
quadratic term over the algorithm performance.

Recovered source signals quality is calculated using the
Signal-to-Interference Ratio (SIR) as performance measurement.
In summary, the SIR evaluates the ratio between the energy of
the target source s; and the energy of the residual interference
signal (i.e. difference between estimated and true signal)
eilk] = 8;[k] — s;[k] as in

2
SIR, = 10 log, 2=k 1"

ST -

>k € K]
with permutation, scale and offsets between source and esti-
mates compensated before the calculations.

(12)

A. Scenario 1: Arbitrary Mixing Matrix

The first scenario was based on testing the separating
algorithms over a single realization of the LQ mixture model.
To evaluate this case, an arbitrary mixing matrix was employed
to simulate the observed signals through the process specified
in Equation (8), with the matrix

1 0.78 0.20 0.58

A= —-0.31 0.72 0.62|°

(13)
where each row of the matrix has a unitary norm. Fig. 4
illustrate the sources and observed signals obtained.

Another way to assess the observed signals and the nonlinear
effects caused by the LQ model is to visualize the source and
mixture spaces. Fig. 5 illustrates the distortions caused by the
LQ model to a regular grid on the [-1,+1] interval. The colors
of the grid are chosen in a way to allow the viewer to perceive
the quadratic characteristic over the observation that would be
otherwise difficult to note in Fig. 4.

Given the observed signals, each algorithm was tested on
the recovery of the sources and then had their SIR evaluated.
Fig. 6 shows the estimated signals for each one of the tested
algorithms. It is possible to note that for N-EASI and AATVL
algorithms that don’t rely on the nonlinear step had poor
estimation for the first samples and consequently overall poorer
performance. As for the BATIN algorithm it had a clear dificulty
to estimate the second source, while the N-EASI-R had the best
performance among the algorithms. The SIR values obtained
for the N-EASI, AATVL, BATIN and N-EASI-R for s;(¢)
were, respectively, 11.9 dB, 9.9 dB, 20.2 dB, 21.0 dB and
for so(t), 5.7 dB, 2.2 dB, 8.9 dB, 8.8 dB compared to the
observed signal SIR of SIR; = 13.9 dB and SIR, = 3.5 dB.
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Fig. 4: The sources s1(t) and s2(t) on the top row, and the
observations x1(t) and z2(t) for the simulation with the LQ model
on the bottom.

TABLE I: Mean SIR values with standard deviations obtained from
100 simulations (N = M = 2).

Method Source 1 (dB) Source 2 (dB)
Mixed —0.7+6.4 —2.0+£3.8
N-EASI 9.6 +4.8 5.8+ 3.5
AATVL 8.7+4.2 1.9+26
BATIN 14.2 £ 8.6 94+76
N-EASI-R 15.94+9.1 10.8 +8.4

B. Monte Carlo

The second scenario assesses the average algorithm per-
formance across multiple Monte Carlo realizations with ran-
domized mixing conditions. For each realization, the observed
signals are generated using a mixing matrix with all coef-
ficients drawn uniformly from [—1,+1], followed by row-
wise normalization to ensure unit norm, but evaluating the
algorithm in a less controlled environment. The mixed signals
were then separated using each algorithm, and then evaluated
with SIR values for each recovered source. Table I shows the
results of mean SIR values (and standard deviation) obtained
for each algorithm. Results show that the overall behavior
observed for the single experiment remains over the Monte
Carlo simulations. Although the overall mean SIR reduce
drastically and present a high standard deviation as there is no
guarantee that the draw matrix is solvable, for the simulated
scenario, the algorithms that implement the nonlinear regression
step presented a performance advantage, with a slight advantage
for the N-EASI-R algorithm.

(a) Sources (b) Mixture
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Fig. 5: Illustration of the effects of the LQ mixture model. Left
figure (a) represents the sources and a grid in the domain [—1, +1] x
[—1, +1], where right figure (b) represents the observed signals and
the regular grid transformed by the LQ mixture model.
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Fig. 6: Result comparison of the N-EASI, AATVL, BATIN and N-
EASI-R algorithms for the LQ model.

C. Impacts of the quadratic term

In the LQ mixing model, the magnitude of quadratic terms
directly affects the system’s nonlinearity: when these terms
approach zero, the model reduces to a linear mixing process,
whereas larger coefficients amplify nonlinear characteristics.
To evaluate how quadratic terms influence both the mixing
dynamics and source recovery performance, a simulation
scenario was designed under the N = M = 2 configuration.
The linear part of the mixing matrix was first randomly ob-
tained (uniform coefficients between [—1, +1]) as the previous
scenario, after which the quadratic coefficients for each source
were independently varied within the range [—1, +1] creating
a grid of the quadratic term combinations. For each point on
this grid, the SIR of the recovered signals was computed to
quantify separation accuracy. This approach not only isolates
the contribution of quadratic terms to the mixing nonlinearity
but also benchmarks the robustness of separation algorithms
across a range of nonlinear conditions.

The impact of quadratic terms on separation performance
is visualized in Fig. 7, which presents a surface plot of
mean SIR values (calculated as (SIR; + SIR5)/2) for different
quadratic coefficients. Each point on the surface represents the
average of 50 Monte Carlo simulations, ensuring statistical
reliability by accounting for variability in the linear mixing
matrix initialization and stochastic algorithm behavior.

It is possible to note from Fig. 7, that as expected, all
algorithm have a decrease in performance as any of the
nonlinear coefficients are closer to one, meaning all of them
presented peak performance as the mixture becomes linear
(by = by = 0). However the overall behavior of each algorithm
changes, as the peaks and decays around zero are different. The
AATVL and N-EASI algorithm once again presented overall
poorer results, however the N-EASI presented more reliable
results when compared to the irregular surface of the AATVL.
The best performance across the quadratic terms variation
were for the BATIN and N-EASI-R, that include the nonlinear
regression step, although besides a higher peak for the near
linear condition for the BATIN, its result are comparable to the
performance of the N-EASI algorithm (without regression). The
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Fig. 7: Mean SIR values in decibels of the recovered sources for the LQ model over 50 simulations of the N-EASI (top-lef), AATVL
(top-right), BATIN (bottom-left) and N-EASI-R (bottom-right) algorithms in a two-source-two-mixture scenario (N = M = 2).

highlights are for the performance of the N-EASI-R algorithm
that presented better results for all the tested quadratic terms
tested. Not only the peaks for the near linear conditions are
higher, but also the minima region in dark blue is above 10 dB,
which means its performance is above any other algorithm
minima. In all scenarios, the combination of an adaptive
algorithm combined to a nonlinear regression based on the
interpretation of the LQ model as time-varying presented best
performance in terms of measured SIR.

V. CONCLUSIONS

This work evaluated blind source separation methods for
LQ mixtures under a time-varying local linear approximation
framework. Among the considered algorithm, the N-EASI-R
consistently demonstrated superior performance, showing ro-
bust and accurate source recovery even under high levels of
nonlinearity. Results suggest that combining adaptive ICA
techniques with nonlinear regression provides a promising
approach for enhancing BSS performance in nonlinear settings.
Future research may focus on hybrid strategies that integrate
both local linear approximations and time-varying modeling to
increase algorithm robustness and extend applicability to more
complex real-world scenarios.
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