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Attenuation of Interference in EEG Signals using
the Adaptive Recursive Least Squares Algorithm

Manoel R. Caetano Junior and Rafael Ferrari

Abstract—In SSVEP-based BClIs, commands are generated by
detecting oscillatory patterns in EEG signals. However, when
these signals are affected by significantly interference, the identi-
fication task becomes more complex. To address this, we propose
a novel spatio-temporal filtering technique called M-RLS-CCA,
a modified version of the RLS-CCA method. We evaluated its
performance against RLS-CCA and standalone spatial filtering
using CCA. We also investigated whether signals from non-
occipital regions can provide information about interference in
occipital signals, helping to reduce such interference. To assess
the method across different electrode configurations, accuracy
and ITR were used as metrics. Results show that both M-RLS-
CCA and RLS-CCA outperform spatial filtering with CCA alone,
regardless of electrode setup. Moreover, M-RLS-CCA showed a
slight improvement compared to the original approach.

Keywords— Adaptive Filtering, Brain-Computer Interface,
Steady-State Visually Evoked Potentials, Recursive Least Squares

I. INTRODUCTION

A brain-computer interface (BCI), or brain-machine inter-
face (BMI), enables communication between the brain and a
computational system by processing electrical brain activity
[1]. By decoding brain signals, the BCI system generates
commands to control external devices, bypassing conventional
motor pathways like muscles and peripheral nerves. This
alternative channel is used in applications such as assistive
technologies, electronic games, and rehabilitation [2].

In BCI systems, electroencephalography (EEG) is widely
used as the primary method for recording brain electrical
activity. As a noninvasive technique that uses electrodes placed
on the scalp, EEG offers advantages such as ease of use,
portability, and low cost, making it the preferred choice in
most BCI applications. However, it suffers from inferior signal
quality with reduced signal-to-noise ratio (SNR) compared to
invasive methods [3].

In recent years, the steady-state visually evoked potentials
(SSVEP) paradigm has gained attention due to its high in-
formation transfer rate (ITR) and minimal user training [4].
An SSVEP-based BCI presents flickering stimuli at different
frequencies, with each frequency linked to a command. The
user selects a command by focusing on the corresponding
stimulus. Neurons in the visual cortex synchronize their
electrical activity with the flickering frequency, producing
evoked potentials that exhibit sinusoidal characteristics at the
fundamental and harmonic frequencies [5].
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Evoked potential detection has traditionally used power
spectral density analysis (PSDA) [6], [2], though recent studies
have shown time-domain techniques to be more effective. One
of the most widely used approaches is canonical correlation
analysis (CCA), originally proposed by Lin et al. [7]. This
spatial filtering technique enhances classification by increasing
the SNR of evoked potentials. Filter Bank Canonical Corre-
lation Analysis (FBCCA) further improves performance by
combining CCA with a filter bank [4]. Recently, Wang et al.
[8] proposed a combination of the CCA with an adaptive signal
enhancement filtering using recursive least squares (RLS-
CCA) to reduce interference in signals from occipital lobe
electrodes, outperforming classification with standard CCA.

The main objective of this work is to propose a modification
to the filtering technique of the RLS-CCA method, which we
call M-RLS-CCA, with the aim of improving the detection
of evoked potentials. This proposal constitutes the primary
contribution of the present study. Additionally, another point
of interest is to investigate whether different regions of the
cerebral cortex can provide reference signals that help improve
the SNR of signals recorded in the occipital region. To answer
these questions, the performance of each of the systems
will be evaluated based on two main criteria: accuracy and
information transfer rate (ITR).

This paper is organized as follows. Section II presents the
problem of adaptive filtering in SSVEP-based BCI, as well as
the original filtering approach using the RLS algorithm [8].
Section III presents the modified filtering method proposed
in this work. Section IV details the experimental methodol-
ogy. Section V presents the performance comparisons of the
methods. Finally, Section VI concludes the paper.

II. PROBLEM DEFINITION

d(n) = s(n) +r(n)
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Block diagram illustrating the signal enhancement problem.

A

Fig. 1.

Figure 1 presents a schematic illustration of the signal
enhancement problem [9]. In the classical approach, two main
signals are used: the primary signal, denoted by d(n), which
contains the desired signal s(n) corrupted by the interference
r(n); and the reference signal, denoted by w(n). It is assumed
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that: (i) s(n) and r(n) are uncorrelated; (i) s(n) and u(n) are
uncorrelated; and (iii) r(n) and u(n) are correlated. The goal
of the filtering process is to use the reference signal u(n) to
estimate the interference component r(n), and then subtract it
from the reference signal in order to estimate s(n).

For each sample at time n, the filter generates a response
v(n), which is compared with d(n), producing an error signal,
e(n) = d(n)—wv(n), that is used to adjust the filter parameters.

A commonly used metric to adjust filter parameters is the
minimization of the mean squared error (MSE) between the
primary signal and the filter’s output.

If the assumptions (i), (ii) and (iii) hold, the minimum MSE
leads to an error signal that corresponds to an estimate of the
desired signal s(n) [9].

In the context of SSVEP BCI [8], d(n) represents the signal
recorded by an electrode in the occipital lobe, s(n) is the
visually evoked potential and r(n) is an interference. u(n),
on the other hand, is a signal from a set of electrodes that
contains information about r(n) but do not register the evoked
potential. In this scenario, it is assumed that most of the
energy associated with the evoked potentials is located in the
occipital lobe [10], [4] while electrodes from other regions
capture little to none of these potentials. When applying the
filtering process, the best scenario occurs when all interference
is canceled out (v(n) = r(n)), and in this case, e(n) = s(n),
i.e., the error signal represents the evoked potentials.

In the original work, Wang et al. [8] proposed using
the average signal collected from a set of electrodes lo-
cated outside the occipital lobe as a reference signal. In
this case, the reference is denoted by @(n), as illustrated
in Figure 2. The structure that models the filter is a linear
finite impulse response (FIR) filter. This filter is characterized
by a coefficient vector w(n), which defines the filter’s tap
weights. The filter performs a convolution operation between
the input signal @(n) and the coefficient vector w(n) =
[wo(n), wi(n),...,wy—1(n)], where N is the number of tap
weights in the filter. To perform this convolution, the input
sample vector is defined as

a(n) = [a(n), u(n—1), ..., an—N+1]" (1)

Then, the output at a given time instant n is

N-1

o(m) = 3 wy(n) - a(n - j) = w'(n)-Gn) @

J=0

Noisy signal in the occipital region
di(n) = si(n) +ri(n)

Non-occipital signals

Fig. 2. Block diagram describing the filtering of an occipital signal using
the average of non-occipital signals as the reference input.

The RLS algorithm [9] is used to update the weight vector
at each iteration n.

The process illustrated in Figure 2 is applied to each i-th
occipital signal d;(n) used in the classification process. After
filtering, the error signals, which are estimates of the evoked
potentials present in the occipital signals, are used as inputs
to the CCA, where spatial filtering and subsequent classifica-
tion occur. The combination of temporal filtering using RLS
together with spatial filtering via CCA is referred to as the
RLS-CCA technique [8]. The spatial filtering and classification
process using CCA will be described in Subsection IV-A.

ITII. M-RLS-CCA

Our proposal consists of a generalization of the filtering
technique presented in [8] and discussed in Section II. The
main modification lies in the application of an individual FIR
filter for each reference signal w;(n). With this approach, the
RLS algorithm is used to simultaneously adjust the coefficients
of all filters at each iteration n, as illustrated in Figure 3.
The main advantage of this method is that, if a reference
signal does not significantly contribute to minimizing the error
signal, which leads to the estimation of the desired signal s(n),
the weights of the filter associated with that signal can be
reduced, thus decreasing its influence on the estimation of the
interferences present in the occipital signals. In contrast, when
averaging the reference signals, all of them contribute equally
to the estimation, including those that do not carry relevant
information about the interferences or have poor SNR.

Noisy signal in the occipital region
di(n) = si(n) + ri(n)

Non-occipital signals

Fig. 3. Block diagram illustrating the filtering of an occipital signal using
multiple FIR filters, one filter for each reference signal.

To enable the simultaneous adaptation of all filters using
the RLS algorithm, it is necessary to slightly modify the input
signals. Specifically, to accommodate K different signals, we
define the the vector u’(n) € RV *! as

s ug(T] )
. ui(n—N+1)]7

u'(n) = [u(n)", ua(n)”

where each input vector u;(n) = [u;(n),. .

corresponds to the i-th reference signal.
Similarly, the filter coefficient vector w’(n) € RENX g

defined as
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where w;(n) = [w; o(n),...,w; y—1]7 is the filter associated
with the ¢-th reference signal.
The filter output at iteration n is then computed as

v(n) = w'" (n)d'(n). (5)

After filtering, the resulting estimates of the occipital sig-
nals, e(n), are fed into the CCA, as done in the original RLS-
CCA method. Since there is one filter for each reference signal,
we refer to this method as Multi-Filter RLS-CCA (M-RLS-
CCA).

IV. METHODOLOGY
A. Canonical Correlation Analysis

Canonical Correlation Analysis is a multivariate statistical
technique used to measure the underlying correlation between
two multidimensional variables [7].

Considering two multidimensional variables X and Y, and
their linear combinations x = X'z, and y = Ysz, the
technique aims to find vectors z,, and z, that define projection
directions for X and Y, respectively, such that the resulting
canonical variables x and y exhibit maximum correlation.
To determine the weight vectors, it is necessary to solve the
following optimization problem

z] E{XY "}z,
\/z;E{XXT}zac . \/ZJE{YYT}zy

where E{XY "} is the cross-covariance matrix between X
and Y, E{XXT} is the autocovariance matrix of X, and
E{YY "} is the autocovariance matrix of Y.

In SSVEP BClIs, the variable X denotes EEG signals from
multiple channels, represented as X &€ RE*Ns , where P
is the number of channels and N is the number of samples
collected in each channel. The variable Y € IR?*"= repre-
sents the reference signals, where () is the number of reference
signals. For unsupervised detection of evoked potentials, the
reference signals are generated using sine and cosine waves

(7]

(6)

max p(x, y) =

Zy,Zy

sin (27 fxt)
cos(27 fit)
2 Ny
Yfk: ) t:777’. a?7 (7)
sin(27 Ny, fxt) 5 3
cos(2m Ny, fit)

with f; being the fundamental stimulus frequency, fs is
the sampling rate of the signals, and N is the number of
harmonics considered in the analysis. The total number of
signals composing each matrix Y, is given by @ = 21V},.

Based on the canonical correlation coefficients extracted for
each reference signal associated with a stimulus presented
in the interface, it is possible to construct a classification
mechanism that infers the active frequency f, in a visual
stimulation window.

For each stimulation frequency presented in the interface,
fr, the maximized correlation between this frequency and
the recorded EEG signals is calculated. Therefore, for each
frequency, the projection vectors zy, € R and Zy, €

IR”*! are obtained, which are responsible for generating the
linear combinations of the EEG signals and the reference
signals, respectively.

The frequency that exhibits the highest correlation coef-
ficient, i.e., the one that produces the largest value pg, is
selected as the active frequency. The classification mechanism
is described by the following equation [4]

fa:mfaka7 k:172a"'7M7 (8)
Jk

where M denotes the total number of visual stimuli used in
the interface.

B. Evaluation metrics

To evaluate the performance of the filtering system, classi-
fication accuracy and ITR [1] (bits/minute) were employed, as
these are metrics widely used in BCI systems [10]. The ITR
can be estimated using the following equation

ITR = (10g, M + Plogy P+ (1 - P)log, (175 ) ) x %
©)
where P is the classification accuracy, and 7T (in sec-
onds/selection) is the average time required to make a selec-
tion, including both gaze fixation time and the time needed to
shift visual focus. In this study, the gaze shift time was set
0.55 s [10]. Thus, this metric represents a good measure of
the trade-off between accuracy and classification time.

C. Benchmark Dataset

In this study, the publicly available dataset provided by
Tsinghua University was used [10]. The dataset was acquired
for a BCI-SSVEP study. The visual interface consisted of 40
visual stimuli, forming a virtual keyboard with 26 English
alphabet letters, 10 digits and four non-alphanumeric symbols.
The experiment involved 35 healthy participants, all with
normal or corrected-to-normal vision. Data collection included
EEG recordings from 64 channels, meaning 64 electrodes
placed on each participant’s scalp. The visual stimuli had
frequencies ranging from 8 Hz to 15.8 Hz, with intervals of 0.2
Hz between them. Each stimulation frequency was associated
with a specific phase, with a phase difference of 0.5 7 between
adjacent frequencies. For each participant, six blocks of 40
trials were recorded, with all 40 stimuli indicated by a visual
cue in random order. Each trial lasted five seconds. The data
sampling rate was 250 Hz.

D. Experimental Setup

The developers of the dataset [10] used the electrode set
Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2 to detect
evoked potentials. In our analysis, we evaluated the individual
performance of each of these electrodes in terms of accuracy
and ITR. Based on this evaluation, we selected the top five
electrodes: PO3, POz, O1, Oz, and O2. These electrodes were
used as the primary signals d;(n), i =1,...,5.

To investigate whether electrodes from different cortical
regions could be used as reference signals, we defined six sets
of non-occipital electrodes, with each set containing K = 3
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signals. These sets, denoted as C; to Cg, were selected from
distinct cortical areas:

o (7 — Pre-frontal: (FP1, FPz, FP2)

e (9 — Frontal: (F1, Fz, F2)

o ('3 — Frontal-central: (FC1, FCz, FC2)

e (4 — Central: (Cl1, Cz, C2)

o (5 — Central-parietal: (CP1, CPz, CP2)

o (g — Parietal: (P1, Pz, P2)

We decided to adopt a fixed configuration of 8 electrodes,
considering that low-cost EEG acquisition systems such as the
basic version of OpenBCI Cyton [11] support only 8 channels.
This constraint ensures that the proposed technique remains
applicable in practical scenarios where electrode placement
must be more selective and carefully planned.

A Butterworth band-pass filter with a passband from 6 to 70
Hz was first applied to the entire dataset. After that, the entire
dataset of a single individual was filtered after initializing the
RLS algorithm. The filter coefficients were reset when filtering
data from a new user. For both the M-RLS-CCA and RLS-
CCA, the forgetting factor was set to 0.99 and and the initial
inverse of the autocorrelation matrix was set to 0.011. We
are considering a scenario in which the characteristics of the
EEG signal vary slowly during stimulation, and the SNR of
the evoked potentials is high. To determine the ideal number
of taps weights used in the filters for each method, a search
was conducted by varying the number of taps applied, with NV
ranging from 1 to 5.

We have three evaluation scenarios:

1) CCA method: The first scenario uses only spatial fil-
tering with CCA, utilizing 8 electrodes, with 5 occipital
electrodes selected, along with 3 electrodes from the
chosen non-occipital set (C; to Cg).

2) RLS-CCA method: The second scenario involves filter-
ing the 5 occipital electrodes, using the average of each
auxiliary signal set. Afterward, the 5 filtered occipital
electrodes are used, applying spatial filtering with the
CCA.

3) M-RLS-CCA method: The third scenario filters the 5
occipital electrodes and applies each set of auxiliary
signals directly to the RLS filter. After that, the 5 filtered
occipital electrodes are used, applying spatial filtering
with the CCA.

In each of the three scenarios, we used N, = 5 harmonics,
as suggested in [4]. Each scenario was evaluated across
different data lengths, ranging from 0.25 to 5 seconds, with
increments of 0.25 seconds. For better interpretability, we
report the number of filter taps that yielded the highest ITR
for each electrode configuration analyzed.

V. RESULTS

Figures 4, 5, 6, 7, 8, 9 show the accuracy and ITR curves
obtained for different data lengths. The error bars indicate the
standard error (SE) [4], [10], calculated based on the average
performance of the 35 subjects in the dataset.

It can be inferred from the results that, regardless of the non-
occipital cortical region used as the source of the interfering
signals, both RLS-CCA and M-RLS-CCA outperform the
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Fig. 4. (a) Classification accuracy. (b) ITRs associated with the accuracy.

Reference signals: C'1. Optimal configuration — RLS-CCA: 4 taps; M-RLS-
CCA: 2 taps for each reference signal.

100
100 —+ cca
—4— M-RLS-CCA
80 80 —3¥— RLS-CCA
s z
< 60 £ 60
> 5
© =
5 =l
E 40 = 40
20 o 20
—3— M-RLS-CCA
—4— RLS-CCA
0 0
1 2 3 4 5 1 2 3 4 5
Data Length (s) Data Length (s)
@)’ {b)°
Fig. 5. (a) Classification accuracy. (b) ITRs associated with the accuracy.

Reference signals: C Optimal configuration — RLS-CCA: 2 taps; M-RLS-
CCA: 3 taps for each reference signal.

standard CCA method. The findings suggest that temporal
information present in the electrodes located outside the oc-
cipital lobe can be leveraged to enhance the SNR of occipital
signals. This, in turn, facilitates the subsequent spatial filtering
process, which directly contributes to improvements in both
the classification accuracy and ITR of the system.
Considering the ITR metric, the best configuration obtained
using only CCA was with the electrode set C'g, which resulted
in a maximum ITR of 81.92 + 6.81%. For the RLS-CCA
technique, the best result was achieved using the C5 set,
reaching 86.78 + 6.22%. For the method proposed in this
work, M-RLS-CCA, the best performance was also obtained
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Fig. 6. (a) Classification accuracy. (b) ITRs associated with the accuracy.

Reference signals: C'3. Optimal configuration — RLS-CCA: 2 taps; M-RLS-
CCA: 2 taps for each reference signal.
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Fig. 7. (a) Classification accuracy. (b) ITRs associated with the accuracy.

Reference signals: C4. Optimal configuration — RLS-CCA: 5 taps; M-RLS-
CCA: 1 tap for each reference signal.
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Fig. 8. (a) Classification accuracy. (b) ITRs associated with the accuracy.

Reference signals: C’s. Optimal configuration — RLS-CCA: 2 taps; M-RLS-
CCA: 2 taps for each reference signal.

using the Cj set, with a peak ITR of 88.55 & 5.99%. In all
cases, the data length that allowed for maximum information
extraction was 1.75 s. The proposed method showed a slight
improvement compared to the traditional method. For any set
of auxiliary electrodes used, the strategy of averaging the
signals or designing a specific filter for each signal yielded
very similar results.

Since the goal was to use only 8 electrodes, with only 3 used
as reference signals, averaging the interfering signals can be
effective, as there may be little variability among the reference
signals. Furthermore, each reference electrode set is located in
the same region, so the signals captured by these electrodes
tend to be highly correlated. A future analysis, considering
a larger number of electrodes and combining distinct cortical
regions, may generate greater variability in the results obtained
by filtering techniques. However, the objective of this work
was to verify whether signals from different cortical regions
could be used to improve accuracy and ITR compared to the
exclusive application of CCA. It can be affirmed that they can,
since, in all sets from C to Cf, the performance of the purely
spatial filtering using CCA was inferior to the RLS-CCA and
M-RLS-CCA.

VI. CONCLUSIONS

In this paper, we propose the M-RLS-CCA algorithm to
mitigate interference in EEG signals in the context of an
SSVEP BCI. The numerical results obtained show that the pro-
posed method exhibits a slight improvement in performance
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Fig. 9. (a) Classification accuracy. (b) ITRs associated with the accuracy.

Reference signals: Cs. Optimal configuration — RLS-CCA: 4 taps; M-RLS-
CCA: 2 taps for each reference signal.

compared to the original RLS-CCA method. For the proposed
algorithm, the set Cs produced the best results, using 2 taps
for each reference signal. In the case of RLS-CCA, the best
performance was achieved with set Cs, also using a filter with
only 2 taps. This indicates that the filtering systems do not
require many parameters to achieve optimal performance. The
experimental results also showed an advantage in applying
temporal filtering before spatial filtering using CCA. More-
over, the results demonstrated that for any non-occipital region
selected, it was possible to achieve better outcomes than only
using spatial filtering. In future work, we intend to increase
the number of channels used to mitigate interference. This will
help verify whether averaging the filtered reference signals
still yields comparable results, especially when the reference
signals come from different non-occipital regions.

REFERENCES

[1] J.R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan, “Brain—computer interfaces for communication and control,”
Clinical Neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.

[2] S. N. Carvalho, T. B. S. Costa, L. F. S. Uribe, D. C. Soriano, G. F. G.

Yared, L. C. Coradine, and R. Attux, “Comparative analysis of strategies

for feature extraction and classification in SSVEP BCIs,” Biomedical

Signal Processing and Control, vol. 21, pp. 34-42, 2015.

R. Abiri, S. Borhani, E. W. Sellers, Y. Jiang, and X. Zhao, “A com-

prehensive review of EEG-based brain—computer interface paradigms,”

Journal of Neural Engineering, vol. 16, no. 1, p. 011001, 2019.

[4] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, “Filter bank canonical
correlation analysis for implementing a high-speed SSVEP-based brain—
computer interface,” Journal of Neural Engineering, vol. 12, no. 4, p.
046008, 2015.

[5] D. Regan, "Human brain electrophysiology", Evoked Potentials and
Evoked Magnetic Fields in Science and Medicine, Elsevier, 1989.

[6] J. Castillo, S. Miiller, E. Caicedo, and T. Bastos, “Feature extraction
techniques based on power spectrum for a SSVEP-BCL,” in Proceedings
of the 2014 IEEE 23rd International Symposium on Industrial Electron-
ics (ISIE), 2014, pp. 1051-1055.

[71 Z. Lin, C. Zhang, W. Wu, and X. Gao, “Frequency recognition based on
canonical correlation analysis for SSVEP-based BCls,” IEEE Transac-
tions on Biomedical Engineering, vol. 54, no. 6, pp. 1172-1176, 2007.

[8] S. Wang, B. Ji, D. Shao, W. Chen, and K. Gao, “A methodology for
enhancing SSVEP features using adaptive filtering based on the spatial
distribution of EEG signals,” Micromachines, vol. 14, no. 5, p. 976,
2023.

[9] S. Haykin, "Adaptive Filter Theory, 4th ed., Prentice Hall, 2001.

[10] Y. Wang, X. Chen, X. Gao, and S. Gao, “A benchmark dataset for

SSVEP-based brain—computer interfaces,” IEEE Transactions on Neural

Systems and Rehabilitation Engineering, vol. 25, no. 10, pp. 1746-1752,

2016.

OpenBCI. OpenBCI: Open Source Biosensing Tools. Available at:

https://openbci.com/. Accessed: May 8, 2025.

[3

—

(1]



