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Stemuc Audio Forge: AI-based Music Source
Separation Using Demucs and CUDA Acceleration
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Abstract— Audio source separation is a fundamental task in
music information retrieval and is widely employed by musicians
and audio engineers. This paper introduces Stemuc Audio Forge,
a system that leverages the Demucs neural network to separate
music into distinct stems (vocals, drums, bass, guitar, piano,
and others). The system incorporates graphics processing unit
(GPU) acceleration via CUDA, reducing the processing time from
approximately five minutes on a CPU to less than 10 seconds
on a GPU. Evaluation on the MUSDB18 dataset demonstrates
high-quality stem separation and significant performance gains,
making advanced music source separation feasible for real-world
applications.
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I. INTRODUCTION

Music source separation decomposes mixed audio into
constituent stems, enabling applications such as remixing,
karaoke, and audio restoration [1]. This task has evolved from
statistical models to deep learning methods that now dominate
the field [2]. Demucs, developed by Facebook Research, has
achieved state-of-the-art performance by extending the U-
Net architecture to the waveform domain [3]. However, these
models often require prohibitively long processing times, with
a typical song taking approximately five minutes on CPU [4].

This paper introduces Stemuc Audio Forge, a music sep-
aration solution based on Demucs, designed for efficient,
high-quality stem extraction through GPU acceleration. We
integrate the htdemucs_6s model, which separates audio into
six distinct stems (vocals, drums, bass, guitar, piano, and
others). Our key contributions include: (1) Implementation of
GPU acceleration, reducing processing time from minutes to
seconds; and (2) Comprehensive evaluation across multiple
metrics on the MUSDB18 dataset.

The rest of this paper is organized as follows. Section II
describes the Demucs architecture and our GPU acceleration
approach. Section III details the system implementation. Sec-
tion IV presents our experimental setup. Section V discusses
the results. Finally, Section VI concludes the paper.

II. METHODOLOGY

A. Demucs Architecture
Demucs is a deep convolutional neural network specifi-

cally designed for music source separation. It utilizes a U-
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Net architecture with temporal convolutions optimized for
audio signals [3]. Unlike many other approaches that operate
on spectrograms, Demucs works directly in the waveform
domain, which allows it to preserve phase information and
achieve high-quality separation.

The architecture consists of an encoder-decoder structure
with skip connections. The encoder progressively reduces the
temporal dimension while increasing the feature channels,
capturing increasingly abstract representations. The decoder
then reconstructs the separated sources by progressively up-
sampling the latent representation. Skip connections between
corresponding encoder and decoder layers help preserve fine-
grained details that might otherwise be lost during encoding
[5].

Recent advancements in the Demucs architecture have in-
troduced hybrid approaches that combine the strengths of both
waveform and spectrogram domains. The Hybrid Transformer
Demucs (HT Demucs) incorporates transformer layers in the
innermost part of the network, enabling better modeling of
long-range dependencies in audio signals [2]. This hybrid
approach has shown significant improvements in separation
quality, particularly for complex musical textures.

Stemuc Audio Forge specifically integrates the htdemucs_6s
model, which is pre-trained to separate audio into six distinct
stems (vocals, drums, bass, guitar, piano, and others). This
model builds upon the hybrid architecture and extends it to
handle more granular source separation beyond the traditional
four-stem approach.

B. GPU Acceleration with CUDA
The original Demucs implementation on a CPU took ap-

proximately five minutes per song. To enhance processing
performance, CUDA acceleration on an NVIDIA RTX 3060
GPU was integrated. This modification significantly reduced
the processing time to approximately 7–10 seconds per track,
facilitating a much more practical workflow for users.

CUDA (Compute Unified Device Architecture) is a paral-
lel computing platform and programming model developed
by NVIDIA that enables dramatic increases in computing
performance by harnessing the power of GPUs. For deep
learning models like Demucs, which involve numerous matrix
operations, GPU acceleration can provide orders of magnitude
speedup compared to CPU implementations [6].

Our implementation leverages PyTorch’s native CUDA sup-
port, which allows seamless transfer of tensor operations from
CPU to GPU. The key optimizations include:

• Batch processing of audio segments to maximize GPU
utilization
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• Half-precision (FP16) computation using torch.cuda.amp
for further speed improvements

• Optimized memory management to handle the large
model size and audio data

• Parallel processing of multiple audio channels
These optimizations collectively enable a significant re-

duction in processing time without compromising separation
quality. The implementation details are further discussed in
Section III.

C. Evaluation Metrics

Evaluation of audio quality employed several quantitative
metrics to provide a comprehensive assessment of separation
performance:

• Mean Square Error (MSE) measures the average
squared differences between original and separated audio
signals, providing a direct measure of waveform recon-
struction accuracy.

• Signal-to-Noise Ratio (SNR) quantifies the clarity of
separated signals relative to background noise, calculated
as:

SNR = 10 log10

∑
t s

2(t)∑
t(s(t)− ŝ(t))2

(1)

where s(t) is the original signal and ŝ(t) is the separated
signal.

• Magnitude Square Coherence (MSC) assesses the
frequency-domain correlation between original and sepa-
rated stems, providing insights into the frequency align-
ment of separated audio [7]. MSC is computed via
SciPy’s coherence function.

• BSS Eval Metrics [8] include:
– Source-to-Distortion Ratio (SDR): Overall separa-

tion quality
– Source-to-Interference Ratio (SIR): Rejection of

other sources
– Source-to-Artifact Ratio (SAR): Absence of artificial

noise
These metrics are calculated using the museval library,
which is specifically designed for evaluating music source
separation.

• Perceptual Evaluation of Speech Quality (PESQ)
evaluates perceived audio quality, particularly useful for
vocal stem evaluation [9]. While originally designed for
speech, PESQ has been found effective for assessing the
perceptual quality of separated vocal stems.

D. Dataset: MUSDB18

The MUSDB18 dataset consists of 150 professionally mixed
songs split into training (100 tracks) and testing (50 tracks)
subsets. Each song is provided as a stereo mixture alongside
individual stems (vocals, drums, bass, and others) [10]. For
consistency, the dataset was converted from the Native Instru-
ments Stems format (MP4) to WAV files using the stempeg
library.

MUSDB18 has become the standard benchmark for music
source separation tasks, enabling fair comparison between

different approaches. The dataset covers various musical gen-
res and recording qualities, providing a realistic test bed for
separation algorithms.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. Demucs Model Integration

Stemuc Audio Forge uses two Demucs variants:
ht_demucs_ft for high-fidelity two/four-stem separation
and ht_demucs_6s for six stems. Models are loaded once
at server startup and deployed on GPU using PyTorch’s
DataParallel when multiple GPUs are available.

The htdemucs_6s model represents a significant advance-
ment over earlier Demucs versions, incorporating hybrid
transformer architecture that combines the strengths of both
convolutional and attention-based approaches. This model was
trained on an expanded dataset beyond MUSDB18, including
additional professionally recorded multi-track songs, which
contributes to its superior separation quality [2].

B. Inference Pipeline

The FastAPI backend exposes a /separate endpoint.
Uploaded WAV or MP3 files are saved, resampled to 44.1 kHz,
and converted to stereo if mono. The selected Demucs model
runs with half-precision torch.cuda.amp to improve in-
ference speed. Output tensors are saved as WAV stems and
served statically.

C. Quality Assessment Automation

We integrated PyTorchMetrics for MSE and SNR, museval
for BSS Eval metrics, and pesq for PESQ. MSC is computed
via SciPy’s coherence function. An evaluation script compares
estimated stems against ground truth, producing per-track and
aggregate reports.

This automated evaluation framework allows for consistent
benchmarking of separation quality across different model
configurations and processing parameters. It also facilitates ab-
lation studies to understand the impact of various components
of the system on overall performance.

IV. EXPERIMENTAL SETUP

All experiments were performed on a Microsoft Windows
11 Pro workstation equipped with a 13th Gen Intel® Core™
i7-13700F CPU (16 core, 24 threads, base clock 2.1 GHz), 32
GB of RAM, and an NVIDIA GeForce RTX 4070 GPU (12
GB VRAM) running CUDA 11.8. The htdemucs_6s model
was trained on the MUSDB18 training set and evaluated on
the held-out test subset (50 tracks). We used a batch size of 1
to accommodate GPU memory constraints.

For GPU acceleration experiments, we measured end-
to-end inference time on both the CPU-only and GPU-
accelerated configurations using the same set of audio files
to quantify performance gains. We also analyzed the effects
of key optimizations—mixed-precision (FP16) inference via
torch.cuda.amp and batch processing—on both through-
put and separation quality.
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Fig. 1. Original vs. separated vocal signal in the time domain.

TABLE I. Average Separation Metrics on MUSDB18 (htdemucs_6s)

Stem MSE SNR
(dB) MSC SDR

(dB)
SIR
(dB)

SAR
(dB)

Vocals 0.00063 8.65 0.92 7.8 11.2 9.5
Drums 0.00031 7.38 0.89 6.5 10.0 8.1
Bass 0.00025 10.51 0.94 9.2 12.3 10.1
Guitar 0.00058 6.20 0.85 5.7 9.1 7.4
Piano 0.00072 5.90 0.87 5.4 9.3 7.8
Other 0.00106 0.39 0.82 4.1 8.0 6.5

V. RESULTS AND DISCUSSION

Evaluation of Stemuc Audio Forge was performed on the
50-track test subset of MUSDB18, using the htdemucs_6s
model.

Figure 1 shows how the separated vocal waveform closely
follows the original, evidencing the model’s fidelity.

Table I summarizes the average separation metrics across
all test tracks.

These results show robust separation quality. The bass stem
attains the highest SNR (10.51 dB) and SDR (9.2 dB), likely
because of its confined frequency band and minimal overlap.
Vocals also perform strongly, with an SNR of 8.65 dB and
MSC of 0.92, confirming high spectral fidelity. The “Other”
category is the most challenging, showing lower scores due to
its diverse content of residual instruments.

When compared with recent methods, htdemucs_6s re-
mains highly competitive. Its hybrid transformer modules
excel in handling complex textures [2], whereas approaches
like Band-Split RNN trade off speed and quality differently
[11].

Critically, GPU acceleration slashes end-to-end inference
from 300 s on CPU to 7–10 s on GPU (30–40× speedup),
making real-time and batch workflows viable. Practical appli-
cations include instrument-specific use for remixing, karaoke
track generation, and music education. While drums, guitar,
and piano separation are solid, they may require light post-
processing to remove residual artifacts.

VI. CONCLUSIONS

Stemuc Audio Forge effectively leverages the Demucs deep
neural network architecture enhanced with CUDA-based GPU

acceleration, providing high-quality music source separation
at significantly reduced computational costs. Experimental
validation using MUSDB18 demonstrates strong performance
across multiple metrics, with particularly good results for bass
and vocal separation.

The integration of GPU acceleration represents a significant
practical advancement, reducing processing time from minutes
to seconds without compromising separation quality. This
makes high-quality source separation accessible for real-time
applications and large-scale batch processing scenarios that
were previously impractical.

The comprehensive evaluation using multiple metrics pro-
vides insights into the strengths and limitations of the system
across different instrument types. This information can guide
users in applying the technology effectively and helps identify
areas for future improvement.

Future work may include extending support for broader
datasets, implementing web-based user interfaces for easier ac-
cess, and exploring real-time audio separation capabilities. Ad-
ditionally, investigating adaptive processing parameters based
on audio characteristics could further optimize the quality-
speed trade-off for different use cases.
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