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Estimation for Massive MIMO–OFDM Systems
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Abstract— Accurate channel state information (CSI) and ef-
ficient multi-user detection are critical for massive MIMO-
OFDM. We present a frame-level deep-neural-network (DNN)
receiver that jointly estimates the channel and detects symbols.
Monolithic and spectrum-partitioned architectures are trained
with Monte-Carlo data under EPA-7 frequency-selective fading
channel model, AWGN, and QAM. Compared with least-squares
(LS) and time-domain MMSE (TD-MMSE) followed by zero-
forcing, the partitioned DNN achieves up to 10 dB bit-error-rate
(BER) gain at 10−3 in a 64× 64 uplink antenna while keeping
latency comparable. The model is robust to cyclic-prefix (CP)
suppression and to a 4× pilot reduction, indicating suitability
for 5G/6G deployments.

Keywords— Massive MIMO, OFDM, Channel estimation, Deep
learning, 5G, 6G.

I. INTRODUCTION

The increasing demands for ultra-high throughput, minimal
latency, and stringent energy efficiency in next-generation
wireless networks, such as 5G and beyond, require innovative
physical layer solutions [1]. Massive Multiple-Input Multiple-
Output (MIMO) combined with Orthogonal Frequency Di-
vision Multiplexing (OFDM) has emerged as a cornerstone
technology to meet these ambitious targets. However, the
full realization of Massive MIMO-OFDM benefits critically
hinges on the availability of accurate channel state information
(CSI) and the deployment of computationally efficient multi-
user detection algorithms. Indeed, next-generation wireless
networks must deliver terabits per second per square kilometer
throughput with sub-millisecond latency and stringent energy
budgets [2]. In this sense, massive MIMO-OFDM is the key
physical-layer technology that enables those targets, yet its
advantages rely on precise CSI and computationally affordable
detectors.

The seminal monograph [2] establishes the theoretical and
practical foundations necessary for understanding the context
of joint detection and channel estimation in massive MIMO-
OFDM systems. The work is regarded as a cornerstone in
the field, offering insights into scalable multi-antenna tech-
nologies. In [3], an adaptive detection scheme using deep
learning (DL) to improve detection accuracy in massive MIMO
systems is introduced. Moreover, training a neural network
(NN) to learn detection patterns addresses the computational
complexity of traditional methods, making it highly relevant
for joint detection tasks in massive MIMO-OFDM systems.

Traditional approaches to channel estimation, such as Least
Squares (LS) and Time-Domain Minimum Mean Square Error
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(TD-MMSE), when coupled with linear detectors like Zero-
Forcing (ZF) or MMSE, often struggle in the massive MIMO
context. These methods typically exhibit high computational
complexity, usually scaling cubically with the number of
antennas, which can be prohibitive for large-scale deploy-
ments. Furthermore, their performance is notably susceptible
to practical impairments such as imperfect cyclic prefix (CP)
utilization and scarcity of pilot resources, which are common
in realistic wireless environments.

To overcome these limitations, machine learning (ML), par-
ticularly deep learning (DL), has garnered significant research
interest as a powerful paradigm for enhancing various aspects
of wireless communication systems. The ability of deep neural
networks (DNNs) to learn complex patterns and relationships
from data without explicit mathematical models makes them
highly attractive for tackling the intricate challenges of joint
channel estimation and data detection in dynamic and complex
Massive MIMO-OFDM systems.

Early investigations of DL for wireless communications
demonstrated promising results for OFDM systems. For ex-
ample, He et al. [4] proposed a DL-based framework for
joint channel estimation and signal detection, which showcases
notable performance gains, especially under low signal-to-
noise ratio (SNR) conditions. Similarly, Ye et al. [5] intro-
duced a DNN architecture that achieved superior performance
over conventional methods in OFDM systems, particularly in
scenarios characterized by high mobility and rich multipath
fading. Building upon such foundational work, the focus has
increasingly shifted towards the more complex Massive MIMO
regime. Recent studies, such as the work presented in [6] and
[7], explore advanced NN architectures for joint channel esti-
mation and symbol detection specifically tailored for MIMO-
OFDM systems, while also highlighting challenges like the
robustness of pre-trained models in dynamic channel condi-
tions. Deep Expectation-Maximization, as introduced in [8],
bridges the gap between classical expectation–maximization
and modern DNNs, enabling efficient joint detection and chan-
nel estimation in MIMO settings. A critical consideration in
these DL-based approaches is the trade-off between achievable
performance and computational complexity. Although sophis-
ticated DNNs can offer significant accuracy improvements,
their inference latency and resource requirements must be
carefully managed for practical deployment. The research by
Zhang et al. [9] provided early analyses on the performance
and complexity of various DL architectures for these tasks,
and this remains an active area of investigation, with ongoing
efforts to develop lightweight yet powerful NN solutions that
effectively balance these competing factors.

Our work extends the application of DL to joint chan-
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nel estimation and data detection specifically for the mas-
sive MIMO-OFDM regime. We aim to address the critical
performance-complexity trade-off by proposing and evalu-
ating novel DNN-based receiver architectures. The primary
contributions of this work are fourfold: i) a comprehensive
computational feasibility study of our proposed DL-based joint
detection and channel estimation approach, benchmarking
its complexity and performance against established classical
schemes like LS+ZF and TD-MMSE+ZF; ii) we introduce
a scalable convolutional DNN architecture with sub-carrier
partitioning; iii) We evaluate their efficiency and efficacy in
systems with 64 × 64 antennas; iv) We provide a detailed
comparative analysis against conventional methods, particu-
larly under challenging conditions such as significant pilot
reduction, the absence of cyclic prefix, thereby demonstrating
the robustness and suitability of the proposed techniques for
future wireless deployments.

Notice that recent studies apply NNs either to signal equal-
ization [3] or to joint detection–channel estimation [5], [10],
but only for SISO scenarios. By contrast, current wireless
standards rely mainly on (massive) M-MIMO architectures,
whose much larger channel dimensionality makes both training
and real-time inference substantially more computationally
demanding.

In our work, we extend joint learning to the massive
regime and provide specific analyses: a) Computational feasi-
bility study of DL-based joint detection and channel estima-
tion in massive MIMO–OFDM, benchmarking its complexity
and performance against classical LS+ZF and TD-MMSE
schemes. b) The scalable DNN architecture (partitioned) eval-
uated in 64× 64 antennas; c) Compare LS+ZF and TD-
MMSE+ZF under pilot reduction and CP removal.

II. SYSTEM MODEL

A. OFDM Signal Model

Let U = {1, . . . , Nusers} denote the set of single-antenna
users served by a base-station (BS) with Nrx antennas, typ-
ically Nrx ≫ Nusers in the massive-MIMO regime. Every
OFDM symbol employs Nsub orthogonal sub-carriers and a
cyclic prefix (CP) of length Lcp > Lh, where Lh is the
maximum delay spread in samples.

User u ∈ U maps its coded bits onto an M -QAM constel-
lation, producing

xu =
[
xu(0), xu(1), . . . , xu(Nsub−1)

]T ∈ CNsub×1.

An Nsub-point inverse fast fourier transform (IFFT) converts
the frequency-domain vector into the time-domain block that is
transmitted over the channel. After CP removal and an Nsub-
point FFT at the BS, the observation on sub-carrier k (0≤k<
Nsub) is

y(k) = H(k)x(k) + z(k), (1)

where

x(k) =

 x1(k)
...

xNusers(k)

∈CNusers×1, y(k) ∈ CNrx×1,

H(k) ∈ CNrx×Nusers is the MIMO channel frequency response
on sub-carrier k, and z(k)∼CN

(
0, σ2INrx

)
denotes additive

white Gaussian noise.
The stacked vector forms x = [x(0)T· · ·x(Nsub−1)T]T and

y are used later for channel estimation and symbol detection.

B. Channel Statistics

The wireless channel is modeled according to the 3GPP
Extended-Pedestrian-A (EPA-7) tapped-delay line, whose
maximum excess delay is τmax = 410 ns and rms delay spread
τrms ≈ 44 ns. Each tap ℓ ∈ {0, . . . , 6} follows a zero-mean
circularly symmetric complex Gaussian distribution

hm,u(ℓ) ∼ CN
(
0, pℓ

)
, (2)

where m indexes the receive antennas and u the single-antenna
users. The tap powers in decibels are[

pℓ
]

dB = {0, −1, −2, −3, −8, −17.2, −20.8} dB,

which are converted to linear scale and normalized such that∑6
ℓ=0 pℓ = 1. Unless otherwise stated, taps are assumed i.i.d.

across antenna pairs (favorable propagation). All simulations
adopt block fading over one OFDM frame.

C. Classical Estimation and Detection Methods

We compare the proposed deep learning scheme with clas-
sical baselines comprising least-squares (LS) and time-domain
minimum mean square error (TD-MMSE) estimators followed
by zero-forcing (ZF) detection.

1) Least-Squares (LS) Estimation: Assuming orthogonal
pilot symbols, the LS channel estimate for subcarrier k is
obtained by

ĤLS(k) = Ypilots(k)X
−1
pilots(k), (3)

where Ypilots(k) contains the received pilot signals and
Xpilots(k) is a known diagonal pilot matrix.

2) Time-Domain MMSE (TD-MMSE) Estimation: This
method exploits the channel’s delay-domain correlation. Let h
denote the vectorized channel impulse response. The MMSE
estimate is given by

ĥ = Rh S
H
(
SRhS

H + σ2I
)−1

ypil, (4)

where Rh is the channel tap covariance matrix, S is the pilot
spreading matrix, and ypil is the received pilot vector in the
time domain. The estimate ĥ is then transformed into the
frequency domain to reconstruct Ĥ(k).

3) Zero-Forcing (ZF) Detection: Once Ĥ(k) is available
from LS or TD-MMSE, the data symbols are detected via the
ZF equalizer:

x̂(k) = Ĥ†(k)y(k), (5)

where Ĥ†(k) denotes the Moore–Penrose pseudo-inverse of
the estimated channel matrix.

These classical approaches form the benchmark against
which our DNN-based joint detector-estimator is evaluated in
terms of BER performance and computational efficiency.
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Fig. 1: Proposed MIMO-OFDM receiver: pilot insertion, FFT, feature stacking and the sub-carrier-partitioned DNN.

III. PROPOSED DNN ARCHITECTURE

The network replaces the conventional channel-estimation
→ linear-detection cascade with a single data-driven module
as illustrated by 1. Real and imaginary parts of the data grid
Ydata and the pilot grid Ypil are stacked, producing input
feature maps.

Sub-carrier partitioning: To keep the parameter count
tractable for massive MIMO we partition the Nsub sub-carriers
into G disjoint groups of equal size, processed by G identical
sub-networks in parallel; here we set G = 16, so that each
sub-network handles Nsub/G = 4 adjacent sub-carriers.

Each sub-network receives an input tensor with dimensions
Nrx × (Nsub/G)× 2Nblocks, corresponding, respectively, to the
receive antennas, the adjacent sub-carriers in the current group,
and the real/imaginary parts of both data and pilot grids across
Nblocks consecutive OFDM symbols.

The input tensor is first processed by a 2-D convolution with
1 024 filters and a 1 × 1 kernel; the output is normalised by
batch normalisation, activated by GELU, and regularised with
a dropout of 0.2. A stack of three additional convolutional
layers, each with 512 filters and GELU activation, refines
these features and preserves spatial locality. The resulting
feature maps are then flattened and passed to a fully connected
multilayer perceptron 1024→512→256, all layers again using
GELU. Finally, a soft-max layer of width Nusers × (Nsub/G)
produces the posterior probabilities of the QPSK symbols
conveyed by the sub-carriers in the current group for every
user, completing the joint estimation–detection task.

All G outputs are concatenated to recover the full block
decision. This design reduces the total parameter count com-
pared with a monolithic dense model and brings the inference
time down.

The network minimises sparse categorical cross-entropy
with RMSprop (learning rate 4×10−4). Early stopping with a
patience of eight epochs prevents over-fitting; the best weights
are selected on a validation set spanning 0–20 dB SNR.

IV. NUMERICAL RESULTS AND IMPLEMENTATION

The parameter values adopted are summarized in Table
I. Training and test datasets were generated in MATLAB

using these parameters. Model training was carried out in
Python/TensorFlow on a Google Cloud server equipped with
an NVIDIA A100. Performance was assessed via Monte-
Carlo simulations: the frozen network was evaluated on 106

additional OFDM frames per SNR point, and its BER and
latency were compared against classical ZF, LS, and TD-
MMSE baselines under identical channel realisations on local
CPU.

TABLE I: Simulation parameters

Parameter Value

MIMO–OFDM
Nrx 64
Nusers 64
Nsub 64 (fixed)
Modulation (M-QAM) 4 (fixed)
SNR range (dB) 0 – 20
CP length Ncp = 0.25Nsub
Channel taps L 7

Channel model
3GPP EPA-7, Rayleigh τrms = 44 ns
Npil (number of pilots) 64,32,16
Estimator LS, TD-MMSE
Equaliser ZF

Neural network (CNN + FC)
Conv layers 1×1/1024, 3×3/512
Dense head 1024 → 512 → 256 → 256
Hidden act. GELU
Output act. Softmax
Loss Categorical cross-entropy
Optimiser RMSprop, α = 4×10−4

Training frames 107

Batch size 32
Epochs 50
Hardware Google Colab GPU

A. Pilot Reduction

Three separate DNNs were trained—one for each pilot den-
sity of 64, 32 and 16 pilots—using the same 64 × 64 MIMO-
OFDM configuration, Nsub = 64 and 4-QAM modulation. Fig.
2 compares their BER curves with the classical LS and TD-
MMSE baselines that operate under the same pilot budgets.
Reducing the pilot count from 64 to 32 moves TD-MMSE
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curve to the right by roughly 4 dB in the low-SNR region,
whereas the corresponding DNN experiences a loss of 2 dB
and still outperforms TD-MMSE that keeps all 64 pilots.
Reducing further to 16 pilots adds only ≈ 2.5 dB of penalty
for the DNN; even with half the pilots, the DNN attains BER
< 10−5 at 12 dB, still surpassing the TD-MMSE solution that
uses twice as many pilots. With the full set of 64 pilots, the
DNN exceeds the ZF bound under perfect CSI by nearly 1 dB,
highlighting its superior pilot efficiency in the massive-MIMO
regime and confirming the trends depicted in Fig. 2.

0 2 4 6 8 10 12 14 16

SNR (dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

ZF perfect CSI

LS 64 pilots

TDMMSE 64 pilots

LS 32 pilots

TDMMSE 32 pilots
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Fig. 2: BER vs. SNR for a 64 × 64 massive-MIMO link (64
subcarriers, 4-QAM) under pilot budgets of 64, 32, and 16
symbols; in each case the DNN equalizer is tested with the
same pilot count used during its training.

To investigate whether a single network can be generalized
to pilot budgets different from those seen during training, we
have trained two independent DNNs under the same conditions
as Fig. 2. In Fig. 3a, the DNN was trained exclusively with
64 pilots, whereas Fig. 3b shows the same architecture trained
with 32 pilots. Key observations:
Adaptation to under-sampling: When DNN trained over 64
pilots is forced to operate with 32 or 16 pilots, the curves shift
by more than 10 dB in the BER range 10−3.
Intrinsic robustness of low-pilot training: The DNN-32,
learned with a sparser pilot pattern, shows a noticeably smaller
BER penalty when pilots are further removed, indicating that
networks trained with less information internalize features that
generalize better to even harsher pilot-scarce scenarios.

B. Absence of Cyclic Prefix
When the CP is omitted, as illustrated in Fig. 4, each

OFDM symbol experiences frequency-selective inter-symbol
interference (ISI) that the classical linear estimators are unable
to cancel. Both LS and TD-MMSE develop a clear error floor
near BER ≈ 10−2: By contrast, the proposed DNN remains
far more resilient. Its curve shifts by only ∼ 2.1 dB. At
SNR = 12 dB, for instance, the DNN without CP still attains
BER≈7×10−5, whereas LS and TD-MMSE stay two orders
of magnitude higher.

It is noteworthy that the network was trained with a CP
using the same pilot budget employed for inference. The

fact that its performance degrades only modestly when the
CP is removed at test time indicates that the learned non-
linear equaliser has internalised a channel-invariant strategy
that mitigates the ISI introduced by the missing guard interval,
rather than merely memorising CP-specific statistics.
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(a) DNN Trained over 64 pilots.
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(b) DNN Trained over 32 pilots.

Fig. 3: BER vs. SNR—64 × 64 M-MIMO, 64-subcarriers 4-
QAM; DNN trained on Npil pilots, and tested at ≤ Npil.

V. COMPLEXITY ANALYSIS

Table II reports the average inference time per OFDM frame
on a 3.0 GHz quad-core CPU for a 64×64 M-MIMO link with
64 subcarriers and 4-QAM modulation. The neural equaliser
is split into 16 parallel subnetworks, each with about 1.6×107

trainable parameters. Although the DNN is roughly five times
slower than TD-MMSE and ten times slower than the The
LS+ZF baseline remains in the same latency scale, suggesting
practical viability for specific applications.

TABLE II: Average execution time per OFDM frame

Method Time (s)

LS + ZF 0.0877
TD-MMSE 0.1613
DNN 0.8617
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From a learning-theoretic viewpoint, the actual bottleneck
is training: the weight count grows almost linearly with
the array size and pilot grouping. In ultra-large arrays, a
single subnetwork, if huge blocks of subcarriers are assigned,
the number of parameters can exceed 5 × 108 parameters,
demanding GPUs with extensive memory usage, motivating
future work on pruning, quantization, and distributed training.
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Fig. 4: Impact of removing the CP on BER for a M-MIMO
link 64×64, 4-QAM, with 64 subcarriers.

VI. CONCLUSIONS

The proposed convolutional neural network architecture,
especially in its subcarrier-partitioned configuration, proves
certain robustness in challenging scenarios that are critical for
practical implementations in 5G and 6G systems.

The numerical results acquired demonstrate that the DNN-
based receiver maintains reliable performance even under
conditions of aggressive pilot reduction, showing a degradation
of only 2 dB when the number of pilots is reduced from 64
to 32, and only an additional 2.5 dB when reduced to 16
pilots. This behavior significantly contrasts with classical LS
and TD-MMSE methods, which suffer substantially greater
degradations. Notably, even with half the pilots (32), the
proposed DNN still outperforms the TD-MMSE solution that
uses the complete set of 64 pilots, achieving BER ≤ 10−5

at 12 dB. With the full set of pilots, the DNN exceeds the
ZF bound under perfect CSI by nearly 1 dB, highlighting its
superior efficiency in the Massive MIMO regime.

The model demonstrated resilience to the complete removal
of the cyclic prefix (CP), a condition that normally introduces
severe inter-symbol interference (ISI). While classical linear
estimators develop an error floor near BER ≈ 10−2, the
proposed DNN approach experiences a shift of only approxi-
mately 2.1 dB in its performance curve. At SNR = 12 dB, for
example, the DNN without CP still achieves BER ≈ 7×10−5,
while LS and TD-MMSE remain two orders of magnitude
higher. This result is particularly significant considering that
the network was trained with CP, indicating that the learned
non-linear equalizer internalized a channel-invariant strategy
that efficiently mitigates the ISI introduced by the absence of
the guard interval.

The computational complexity analysis revealed that, de-
spite the significant BER improvement, the DNN exhibits
latency on the same order of magnitude as the TD-MMSE
and LS methods. This difference, although present, is not
prohibitive for many practical applications, especially given
the substantial performance gains achieved.

From a computational learning perspective, we identified
that the main bottleneck lies in training, as the number
of weights grows almost linearly with the dimensions that
define the wireless scenario. Training these M-MIMO DNNs
demands high-memory GPUs, often impractical in real-time
operation. The strategy of partitioning the model into sub-
networks partially mitigates the scalability problem, but the
memory footprint and the number of floating-point operations
remain substantial.

Experiments with alternative setups show that, when the
DNN is trained on the harsher i.i.d. Rayleigh channel with
sparser pilots, its BER rises only modestly after further pilot
cuts—evidence that scarcity forces the model to learn features
that transfer well. The same mechanism is expected to hold for
milder Rician links, and future work will extend the study to
vehicular, high-Doppler channels. Although the achieved per-
formance is encouraging, the overall balance between spectral
efficiency and computational burden does not yet fully meet
the optimization targets envisioned for Massive MIMO-OFDM
applications in real-world scenarios. Future work could ex-
plore more efficient network architectures, model quantization
and pruning techniques, or hybrid approaches that combine the
power of deep learning with traditional analytical methods to
achieve a better balance between performance and complexity.
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