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IM-OCDM for ISAC: Joint Communication and
Sensing Using Index Modulation and LFM Radar

José Miracy de Souza Filho, George Lucas Lima Takemiya, and José Carlos Marinello Filho

Abstract— This work proposes an Index Modulation-based
Orthogonal Chirp Division Multiplexing (IM-OCDM) waveform
for integrated sensing and communication (ISAC) in future 6G
systems. By embedding Linear Frequency Modulated (LFM)
radar pulses into the inactive subchirps of a sparse IM-OCDM
grid, the design enables joint radar-communication operation
without spectral overhead. To accurately identify radar and
communication subchirps, we propose deep learning classifiers
operating on raw time-domain 1I/Q sequences. Two architectures
are investigated: a CNN with gated recurrent units and attention
(CNN-GRU-Att), and a CNN with Transformer-based attention
including explicit SNR embedding (CNN-Transformer-Att). A
large-scale dataset of 44,000 samples was generated across SNR
levels (0-20 dB) and radar-to-communication power ratios from 0
to 3 dB—where radar signals are increasingly dominant. Results
show that the Transformer-based model consistently outperforms
the GRU-based counterpart in all regimes, reaching up to
96.3% F1-score and 99.3% Area Under ROC Curve (AUROC)
under high SNR. Moreover, the Transformer exhibits improved
robustness under noise and signal imbalance, confirming its
suitability for dynamic ISAC environments. The proposed solu-
tion enhances spectral efficiency, sensing accuracy, and subchirp
classification, providing a scalable physical-layer framework for
next-generation ISAC systems

Keywords— 6G, ISAC, IM-OCDM, radar, sensing, chirp sig-
nals, Transformers, GRU.

I. INTRODUCTION

6G networks are envisioned to support seamless integra-
tion of communication and environmental sensing, enabling
intelligent services such as autonomous driving, industrial
automation, and immersive applications. Integrated sensing
and communication (ISAC) is a foundational enabler for
such applications, aiming to unify radar and communication
operations within a common radio infrastructure [1], [2].

Conventional waveforms like orthogonal frequency divi-
sion multiplexing (OFDM) exhibit high sidelobes, limited
Doppler resilience, and poor autocorrelation, limiting their
effectiveness in ISAC scenarios [3], [4]. Orthogonal chirp
division multiplexing (OCDM) leverages chirp signals with
inherent robustness against multipath fading and Doppler shifts
[5]. However, Index Modulation (IM) in IM-OCDM enables
sparse symbol transmission while leaving inactive subchirps
underutilized [6].
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Fig. 1.  Dual-Functional Radar Communications (DFRC) refers to joint
systems that employ a shared, single transmitted waveform for both com-
munication and radar functions. Monostatic defines the system for sensing
topology (co-located TX).

This paper proposes an IM-OCDM framework that embeds
LFM radar pulses [7] into inactive subchirps, enabling simulta-
neous radar and communication without additional bandwidth.
Figure 1 illustrates the considered ISAC scenario.

Since the communication receiver cannot a priori de-
termine which subchirps are allocated for communication,
we introduce a Convolutional Neural Network combined
with a Transformer-based attention mechanism (CNN-
Transformer-Att). This model captures both local spatial
features and global dependencies within subchirp sequences,
enabling accurate identification of communication subchirps.

Radar performance is benchmarked via the Cramér-Rao
lower bound (CRLB), while communication efficacy is as-
sessed using the data information rate (DIR). These metrics are
jointly analyzed using a Tchebycheff scalarization method to
evaluate trade-offs under varying signal-to-noise ratio (SNR)
levels [8].

Main Contributions:

o An IM-OCDM waveform that embeds LFM radar pulses
into inactive subchirps for ISAC operation, enhancing
spectral efficiency without additional bandwidth require-
ments.

e A deep learning-based classifier framework using CNN-
GRU-Att and CNN-Transformer-Att architectures, op-
erating directly in time-domain received sequences for
robust subchirp classification.

o A comprehensive performance evaluation incorporating
classification metrics (Accuracy, Precision, Recall, F1,
Area Under ROC Curve) and ISAC metrics (DIR, MI,
CRLB).

o A Tchebycheff-based multi-objective analysis to assess
the DIR-MI trade-off, revealing complementary strengths
of GRU-based and Transformer-based classifiers under
different SNR regimes.

The proposed IM-OCDM framework, together with deep
learning-based classifiers, improves spectrum usage and sens-
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ing accuracy, offering a scalable solution for real-time ISAC
in future 6G systems.

A. Related Work

ISAC has emerged as a key enabler for 6G systems, motivat-
ing various waveform designs to jointly support communica-
tion and sensing. OFDM remains a baseline due to its maturity
[9], but its high sidelobes and poor Doppler resilience limit
performance in high-mobility scenarios [3]. Orthogonal time-
frequency space (OTFS) improves robustness under mobility
[5], though it incurs high equalization complexity. Chirp-based
OCDM offers better Doppler and multipath resilience [5], yet
previous approaches underutilize inactive subchirps.

The proposed IM-OCDM framework addresses this gap
by embedding LFM radar pulses into inactive subchirps via
index modulation, enhancing spectral efficiency without ex-
tra bandwidth. Furthermore, our CNN-Transformer-Att model
with SNR embedding improves subchirp classification over
traditional methods, supporting dynamic ISAC operation with
scalability for 6G deployments.

II. SYSTEM MODEL

The proposed IM-OCDM ISAC framework transmits com-
munication and radar signals over orthogonal subchirps within
the Fresnel domain. Communication subchirps are exclusively
used for data transmission, while inactive subchirps are al-
located for radar operations using LFM pulses. There is no
physical overlap between radar and communication signals at
the subchirp level.

The signal classification problem does not aim to separate
physically superimposed signals within the same subchirp,
but rather to distinguish which subchirps were allocated for
communication versus radar within each IM-OCDM block.
This corresponds to a binary classification task:

o Label 1: subchirps used for communication (COMM).

o Label 0: subchirps available for radar (RADAR).

This distinction is essential for ISAC scenarios where re-
liable identification of communication versus radar resources
is required under channel impairments and noise. Figure 2
illustrates the general system architecture, highlighting this
functional partitioning.

At the communication receiver, a CNN-Transformer net-
work with attention distinguishes radar from communication
content by learning spatio-temporal patterns in the time-
domain received sequences, enabling robust classification
across varying SNRs.

The architecture is benchmarked against an OFDM-based
ISAC method [9] using identical simulation parameters. Key
performance indicators include DIR for communication and
MI for radar, adapted to the chirp-based structure.

A. Subchirp Signal Definition and Transmission

Each OCDM subchirp is represented in the Fresnel domain
by an orthogonal linear chirp basis function. The basis function
Yi[n] is defined as:

2

Yrln] = \/—Neﬂ'm"*’“) , 0<n<N. (1)
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The parameter « controls the chirp rate, and is calculated
as « = B/N, where B is the total bandwidth and N is the
total number of subchirps.

The composite Fresnel-domain signal X is constructed by
combining both communication and radar components:

X = Xcomm + Xradary (2)

where:

o Xcomm contains k active subchirps modulated via IM with
QAM symbols placed at indices of active communication
subchirps Qcomm-

o Xiadar contains LFM radar pulses placed at indices
Qragar = {0,1, ..., N — 1} \ Qcomm-

The time-domain ISAC signal x[n] is generated by applying
the inverse Discrete Fresnel Transform (IDFnT) [7] to the
composite Fresnel-domain signal:

z[n] = IDFaT(X), n=0,1,..,N —1. 3)

This time-domain signal x[n] encapsulates both radar and
communication functionalities in a single waveform, transmit-

ted over the shared spectrum.

B. IM-OCDM  ISAC Signal
Transformer-Att Receiver

Generation and CNN-

To ensure reproducibility, Table I summarizes the key
characteristics of the generated dataset.

Signal Generation: The total N subchirps are divided
into g subblocks, each with n. = N/g subchirps. In each
subblock, & subchirps are activated for communication using
index modulation combined with QAM (modulation order M),
while the remaining (n. — k) subchirps are allocated for radar
via LFM pulses. The composite signal is constructed in the
Fresnel domain and converted to the time domain via IDFnT
with a sampling rate F. The signal generation process is
detailed in Algorithm 1.

Receiver: Two neural architectures are proposed for
subchirp-level classification: (i) CNN-GRU-Att, which com-
bines convolutional layers with Gated Recurrent Units (GRUs)
to model temporal dependencies; and (ii) CNN-Transformer-
Att, which replaces GRUs with a Transformer encoder to
capture long-range dependencies via self-attention. Both mod-
els process time-domain received sequences and incorporate a
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TABLE I
DATASET AND CNN+TRANSFORMER+ATT SETUP FOR IM-OCDM ISAC

Parameter Value

Dataset

44,000
0-20 in steps of 2
Power Ratio (dB) 0-3 in steps of 1
Subchirps per Sample (N) 256
Subblocks per Frame (g) 8
Comm/Radar Split ~58% | 42%
Channel Model Rayleigh fading + AWGN
Modulation 16QAM
Bandwidth 1 MHz
Subchirp Activation Weighted random: 1 4 2 - rand(1, n.)

Model Hyperparameters

Total Samples
SNR Range (dB)

CNN Filters [32, 64]
Transformer Layers 3
Attention Heads 8
Embedding Dim. (d) 64
SNR Embedding 64-D MLP
Optimizer / LR Adam / 103
Batch Size / Epochs 32 /300

Loss / Criterion BCE / Max Fl-score

normalized SNR parameter as an additional input. The SNR is
transformed into an embedding vector u € RN *du  which is
concatenated with features extracted by a shared CNN-based
feature extractor. The combined features Z are then added
to a trainable positional encoding (PosEnc)' before being
processed by an attention pooling layer for final classification.
The inference pipeline, including SNR embedding, is detailed
in Algorithm 2 for both classifiers. Their performance is
compared in Section III.

Algorithm 1 IM-OCDM ISAC Signal Generation
Require: N, g, k, M, F
Ensure: Time-domain ISAC signal x[n]
I: n. < N/g
. Generate bitstream b of length g - log, (72‘) + gklogy, M
. Split b into bjgx (index bits) and by (modulation bits)
: Map bigx — Qccvmm
: QAM map bpeg — S
. Populate s into Qcomm — Xcomm
Set Qragar = {0, ..., N — 1} \ Qeomm
: Populate LFM into Qagar — Xiadar
X = Xcomm + Xradar
. Apply IDFnT: z[n] = IDFnT(X)

(=]

C. Channel and Received Signal Model

The received signal is modeled under a frequency-flat
Rayleigh fading channel with additive white Gaussian noise

(AWGN) as: y[n] = h - z[n] +wln), “)

where h is the complex fading coefficient (constant over the
block) and w[n| is zero-mean complex Gaussian noise.

The time-domain ISAC signal z[n] is generated via the
IDFnT: x = F¥.X, where X is the composite Fresnel-domain

PosEnc is a trainable vector of dimension (N x (d + d,)), added to the
concatenated features to inject positional information before the Transformer.

Algorithm 2 ISAC Rx with CNN-Transformer/GRU-Att

Require: Time-domain signal y[n] € CV, normalized SNR
scalar

Ensure: Subchirp classification labels g

1: Separate Real and Imag: y[n] — Y € RV*2
Compute SNR embedding: u € RV X4«
Apply 1D CNN on Y: Z,, € RV*d
Concatenate features: Z = [Zen, | u] € RV > (dFdu)
Add positional encoding (PosEnc): Z < Z + PosEnc
Feed Z to Transformer encoder (multi-head attention)
Apply sigmoid classifier: § € [0, 1] (binary decision per
subchirp)

R ol

signal combining communication and radar components, and
F¥ is the IDFnT matrix (unitary matrix).

At the receiver, the signal y is directly input to a CNN-
Transformer-Att model. The CNN extracts local spatial
features, while the Transformer encoder captures global de-
pendencies through self-attention. Attention weights o are
computed as:

oy = softmax (qT -tanh(Why + b)), ®)

where h; € R? is the hidden state at time ¢, W € R%4*? ig the
weight matrix, b € R? is the bias vector, and qE< R? is the
learnable query vector in the attention mechanism. d denotes
the latent feature dimension of the GRU or Transformer layers,
a context vector ¢ summarizes the sequence:

T
CcC = Zoztht, (6)
t=1

which feeds dense layers for final subchirp classification. This
learning-based approach leverages the chirp-orthogonal signal
structure and attention-driven feature selection for robust sub-
chirp classification in noisy channels. 7' denotes the number of
time samples per OCDM block, corresponding to the temporal
length of the input sequence (e.g., T' = 256).

D. Performance Metrics

In Section III, we evaluate performance in terms of four
metrics: DIR, MI, CRLB, and Tchebycheff scalarization.

1) Data Information Rate (DIR): The DIR represents
the achievable communication rate considering both symbol
modulation and index modulation. For IM-OCDM, it is:

Te
DIRtOlal == Z 10g2<1 + |If[k|2 ‘ ’-Y) + \‘10g2 <k )J I (7)

k€Qcomm

where Qcomm denotes the set of subchirp indices assigned for
communication, |Hy|? is the channel power gain on subchirp
k, v = 02 /0? is the transmit SNR, with o2 being the average
transmit power per subchirp, and o2 the noise power. The first
term accounts for modulation capacity, while the second term
captures the information conveyed by index modulation (IM)
bits.

2) Mutual Information (MI): The MI metric evaluates
sensing information content for radar subchirps, considering
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the channel gain and power allocation. It is given by:

I .
Mi=3 Y log(1+1H P p7).  ®
keQradar

where Qp,qq is the set of radar-allocated subchirps, |H, ,ir) |2 is
the radar channel gain, and p = 10P*/10 is the power allocation
ratio in linear scale, with PR ranging from 0 to 3 dB. The
factor % reflects the real-valued nature of radar information.

3) CRLB - Range Bound: The CRLB expresses the
minimum achievable variance for unbiased estimators of time-
delay (7) and range (R) in radar sensing:

1

sm2 02 Hy[2py T

where 8 = B/v/12 is the RMS bandwidth, and T is the
symbol duration.

4) DIR-MI Trade-off:

Tcheby = max(wl(% + 53), wg(MII\*,[;MI + fS)),
(10)

where S = 2 ”gIE*DIR + MII\*,HZMI, DIR* and MI* are the utopia
points (maximum achievable DIR and MI), w; and ws are
weights satisfying w; + we = 1, with w; prioritizing DIR and
wy prioritizing MI, and £ = 0.01 is an augmentation coefficient
to avoid weak Pareto-optimal solutions. This scalarization

approach traces the Pareto front for DIR-MI trade-offs.

CRLB(7) = 9

E. Classification Performance Metrics

The following metrics are used to evaluate the classification

performance of the proposed models:

e Accuracy: proportion of correctly classified subchirps
over the total number of subchirps.

o Precision: ratio of true positives to predicted positives.

o Recall: ratio of true positives to actual positives (also
known as sensitivity).

o Fl-score: harmonic mean of precision and recall, repre-
senting balanced performance.

e AUROC (Area Under ROC Curve): overall ability
to distinguish between radar and communication labels
across thresholds.

All metrics are reported globally and segmented by SNR

and power ratio (PR) levels to assess robustness under channel
variation and signal dominance conditions.

F. Computational Complexity Considerations

The proposed models deliver robust classification and sens-
ing performance, though computational complexity is key
for real-time embedded deployment. Transmitter-side IDFnT
processing scales at O(Nlog N), akin to IFFT. Receiver-
side CNN-GRU-ALt incurs O(T'd?) complexity, limiting GPU
parallelization due to its sequential nature. Conversely, CNN-
Transformer-Att scales at O(T2d), leveraging parallelizable
self-attention across subchirps for faster inference on opti-
mized hardware. For embedded systems, model compression,
hardware acceleration, or SNR-aware switching is recom-
mended. Future work will profile inference time and resource
usage under real-time constraints.

III. RESULTS AND DISCUSSION

Table II presents the key simulation parameters adopted
from [9] to obtain the numerical results presented in this
section.

TABLE II
KEY SIMULATION PARAMETERS: OFDM-ISAC vs. IM-OCDM-ISAC

Parameter OFDM IM-OCDM
Modulation 16QAM 16QAM
Waveform OFDM OCDM + LFM
Resources 256 carriers 256 subchirps
Comm/Radar Split 128/128 ~58%/42%
Samples - 44k
SNR (dB) 0-20 0-20
Power Ratio (dB) - 0,1,2,3
Signal Format 1/Q 1/Q
Sample Rate (MHz) 2 2
Bandwidth (MHz) 1 1
Symbol Duration (ys) 64 64
Channel Rayleigh + AWGN
Target Parameters 3600 m, 40 m/s

A. Comparative ISAC Performance Analysis and Design In-
sights

Fig. 3 illustrates the ISAC performance of IM-OCDM at
a PR of 3 dB and SNR ranging from 0 to 20 dB. DIR
and MI grow with SNR, while CRLB decreases, confirming
the inherent trade-off between communication and sensing.
Subplot (d) shows the DIR-MI trade-off curve obtained using
Tchebycheff scalarization. The point highlighted by a black
star represents the configuration that minimizes the Tchebycheff
metric, under PR = 3 dB, across all evaluated allocations and
SNR values. This Tchebycheff-optimal point occurs at SNR =
20 dB, achieving DIR = 958.98 bits, MI = 709.86 bits (close
to its utopia value), and CRLB = 142.57 m, with weights
wp = 0 (full MI priority). This configuration minimizes
the scalarization to 1.43 x 1073, demonstrating IM-OCDM’s
capability to prioritize radar observability while maintaining
high communication performance.

TABLE III
COMPARISON BETWEEN IM-OCDM (TCHEBYCHEFF-OPTIMAL) AND
REFERENCE [9] (RANDOM)

Configuration DIR [bits] | MI [bits] | CRLB [m]
Reference (Random) 1,491.1 764.19 N/A
IM-OCDM (Tcheby-optimal) 958.98 709.86 142.57

Although this Tchebycheff-optimal point achieves lower
DIR compared to the random configuration in [9], IM-
OCDM reaches the MI upper bound while ensuring flexibility
in resource allocation. Unlike OFDM-based baselines, IM-
OCDM dynamically redistributes subchirps between radar and
communication, enabling adaptive operation under heteroge-
neous ISAC requirements. This flexibility makes IM-OCDM
particularly suitable for 6G scenarios, where on-demand sens-
ing—communication trade-offs are critical.

B. Neural Network Performance Analysis

Tables IV and V show the classification results of CNN-
Transformer-Att and CNN-GRU-Att (both with SNR embed-
ding) under different SNR and PR conditions.
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The Transformer consistently outperforms the GRU across
all metrics. At low SNR (0-6 dB), it achieves F1 = 0.791
vs. 0.711 for GRU; at medium SNR (7-13 dB), the gap
widens (F1 = 0.904 vs. 0.754); and at high SNR (14-20 dB),
Transformer approaches near-perfect accuracy (F1 = 0.944,
AUROC = 0.983). For PR = 3 dB, Transformer reaches F1 =
1.000 and AUROC = 1.000, while GRU scores F1 = 0.963 and
AUROC = 0.993. These results confirm that SNR embedding
with self-attention enhances robustness for dynamic ISAC
environments.

TABLE IV
PERFORMANCE VS. SNR (PR=3DB)

SNR Model F1 Acc. Recall | AUROC
Low TF+SNR 0.791 | 0.791 0.752 0.867
GRU+SNR | 0.711 | 0.694 | 0.714 0.767
Medium TF+SNR 0.904 | 0.903 0.860 0.955
GRU+SNR | 0.754 | 0.747 0.733 0.824
High TF+SNR 0.944 | 0.943 0.900 0.983
GRU+SNR | 0.769 | 0.763 0.747 0.840
TABLE V
PERFORMANCE VS. PR (SNR =20DB)
PR Model F1 Acc. Recall | AUROC
0 dB TF+SNR 0.904 | 0.900 | 0.904 0.961
GRU+SNR | 0.823 | 0.816 | 0.817 0.898
3 dB TF+SNR 1.000 | 1.000 1.000 1.000
GRU+SNR | 0.963 | 0.961 0.958 0.993

IV. CONCLUSION

This work proposed an IM-OCDM-based ISAC framework
embedding LFM radar into inactive subchirps to enable dual
functionality without extra spectrum. IM-OCDM surpassed
OFDM in throughput and range precision while support-
ing flexible sensing—communication trade-offs. For reception,
CNN-Transformer-Att with SNR embedding consistently out-
performed the GRU baseline, achieving near-perfect perfor-
mance at PR = 3 dB (F1 = 1.000, AUROC = 1.000). SNR
embedding and attention mechanisms proved essential for

robustness under dynamic conditions. Future work will target
Doppler resilience, MIMO/multiuser extensions, and scalable
Transformer designs. IM-OCDM combined with attention-
based receivers shows strong potential for 6G ISAC deploy-
ments.

REFERENCES

[1] N. Gonzalez-Prelcic, M. F. Keskin, O. Kaltiokallio, M. Valkama, D. Dar-
dari, X. Shen, Y. Shen, M. Bayraktar, and H. Wymeersch, “The Integrated
Sensing and Communication Revolution for 6G: Vision, Techniques, and
Applications,” Proceedings of the IEEE, pp. 1-0, 2024.

[2] W. Zhou, R. Zhang, G. Chen, and W. Wu, “Integrated Sensing and
Communication Waveform Design: A Survey,” IEEE Open Journal of
the Communications Society, vol. 3, pp. 1930-1949, 2022.

[3] A. Chakravarthi Mahipathi, B. Pardhasaradhi, P. Lingadevaru, P. Srihari,
J. D’Souza, and L. Reddy Cenkeramaddi, “A Survey on Waveform
Design for Radar-Communication Convergence,” IEEE Access, vol. 12,
pp. 75442-75461, 2024.

[4] M. S. J. Solaija, S. E. Zegrar, and H. Arslan, “Orthogonal Frequency
Division Multiplexing: The Way Forward for 6G Physical Layer Design?”
IEEE Vehicular Technology Magazine, vol. 19, no. 1, pp. 45-54, 2024.

[5] L. Giroto de Oliveira, B. Nuss, M. B. Alabd, A. Diewald, M. Pauli, and
T. Zwick, “Joint Radar-Communication Systems: Modulation Schemes
and System Design,” IEEE Transactions on Microwave Theory and
Techniques, vol. 70, no. 3, pp. 1521-1551, 2022.

[6] J.Liu, P. Yang, T. Q. S. Quek, Y. Xiao, and W. Xiang, “Orthogonal Chirp
Division Multiplexing With Index Modulation,” IEEE Transactions on
Communications, vol. 72, no. 8, pp. 4577-4590, 2024.

[7]1 X. Ouyang and J. Zhao, “Orthogonal chirp division multiplexing,” IEEE
Transactions on Communications, vol. 64, no. 9, pp. 3946-3957, 2016.

[8] P. Wang, D. Han, Y. Cao, W. Ni, and D. Niyato, “Multi-
Objective Optimization-Based Waveform Design for Multi-User
and Multi-Target MIMO-ISAC Systems,” [EEE Transactions on
Wireless  Communications, p. 1-1, 2024. [Online]. Available:
http://dx.doi.org/10.1109/TWC.2024.3428705

[9] B. Yang, S. Zhao, and M. Yi, “Subcarrier Multiplexing OFDM-based
Radar Communication Integration,” in 2021 13th International Confer-
ence on Wireless Communications and Signal Processing (WCSP), 2021,

pp. 1-5.



