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Abstract—Poor traffic sign conditions compromise road safety
and due to the huge dimensions of the road network, its manual
inspection is costly and slow. This work demonstrates the use
of the YOLO (You Look Only Once) algorithm for automated
detection and classification of Brazilian traffic signs. An initial
model was trained on a small dataset of manually analyzed
images. The model was then used to process a larger set of
images extracted from public videos and from the Internet. The
resulting enlarged dataset was subjected to manual verification
and correction of the initial detections/classifications, generating
a dataset with 2,000+ images (6,000+ after data augmentation).
A final model was then trained on the refined dataset, achieving
significant accuracy, recall, and mAP@50 values for the 10 most
well-represented traffic signs. The simple approach presented
herein shows a strong potential for cost-effective, real-world
applications in intelligent traffic systems and urban monitoring.

Index Terms—Traffic signs, detection, classification, YOLO.

I. INTRODUCTION

Urban densification in recent decades has contributed to
the increased use of vehicles, which in turn raises the risk of
traffic accidents which are frequently associated with missing
road signage or its poor maintenance. According to the World
Health Organization (WHO), traffic accidents cause between
20 and 50 million non-fatal injuries each year and account
for approximately 3% of the Gross Domestic Product (GDP)
of low-income countries, where 90% of traffic-related deaths
occur [1]. In Brazil, the National Confederation of Transport
(CNT) points out that failures in road infrastructure, including
signage, are responsible for a significant number of accidents
on federal highways, which cause fatalities and non-fatal
injuries, which potential long-term consequences could often
be prevented through proper vertical traffic signage, as later
highlighted in [2].

For regional context, Ceará state’s road network exceeds
53,000 kilometers (including municipal, state, and federal
roads), demanding consistent monitoring of its maintenance
conditions. Annually, Ceará sees thousands of road accidents,
many fatal, often attributable to deficient signage and poor
road conservation. Public entities, including the National
Department of Transport Infrastructure (DNIT) and entities
at various levels of the government are tasked with this
monitoring and maintenance. Given its sheer scale, supervised
automated monitoring becomes an essential tool for a more
efficient management of the road network.
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While agencies like DNIT already track a Maintenance
Condition Index (ICM), critical aspects like horizontal and
vertical road markings and signs require more focus. To the
best of the author’s knowledge, the Brazilian public sector
currently lacks a dedicated artificial intelligence (AI) tool for
automatically detecting and classifying vertical signage. In
this paper, we propose to use the YOLO (You Look Only
Once) detection/classification tool to automatically identify
traffic signs on road images. This approach represents a crucial
initial step for realizing supervised automated monitoring of
vertical signage quality and improving the ICM. Further-
more, combining such a solution with Geographic Information
Systems (GIS) and a specialized post-processing stage to
identify the conservation state of vertical signs could offer a
comprehensive solution with significant economic and social
benefits for Ceará and other regions.

In this context, the use of AI to promote safer traffic
shows promises and challenges in detection/analysis of visual
elements in urban environments (e.g., traffic signs), especially
under adverse lighting, weather, and occlusion conditions.

A. Contributions

In our approach, we initially created and labeled1 [3] a
small dataset with which we trained a preliminary YOLOv11
model. To expand the dataset and improve model performance,
a Python script was used to extract frames from publicly
available Internet videos depicting Brazilian road driving sce-
narios, which were compiled into a new dataset, on which the
initial model was applied to produce coarse object annotations.
These were then manually reviewed and corrected, producing a
refined labeled dataset, which was subsequently used to retrain
the model, resulting in improved accuracy and generalization.

It is worth noting that this semi-automated and iterative pro-
cess can be repeated to continuously refine both the dataset and
the trained models. This approach supports scalable dataset
expansion with minimal manual annotation overhead after the
initial phase.

As contributions of this paper, we highlight:
• Construction of a dataset of Brazilian traffic signs for AI

applications.
• Presentation of a simple approach for traffic sign de-

tection/classification with successive dataset building and
model refinement.

• Showcase that well-represented classes of traffic signs can
be efficiently detected and classified automatically using of-
the-shelf tools.

1For instance, labelImg was used.

https://pypi.org/project/labelImg/
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B. Related works

The idea of using AI to detect and classify traffic signs
is not new; some works already detect and classify traffic
signs with YOLO. In Brazil, the authors in [4] studied a
methodology for automatically detecting and georeferencing
traffic signs on rural roads using YOLOv8 and Convolutional
Neural Networks to improve asset management and road
safety. Although [4] investigated this subject and made efforts
to create a Brazilian Regulatory Traffic Sign Recognition
Dataset (BRTSD)2 [5], as far as the authors are aware, there is
no dataset for Brazilian traffic signs adapted for YOLO-based
applications, maybe except for [6]. This claim is also partially
evidenced, e.g., in [7] which has conducted research on the
subject over several years. Anyway, the automatic traffic sign
detection with YOLO in a global context remains a relevant
research area [8], [9]. Indeed, the work in [8] has shown good
results with the YOLOv5-TS model, a model optimized for
traffic sign detection. The authors in [9] also proposed an
optimized YOLO version – YOLO-BS, based on YOLOv8 – to
improve traffic sign recognition. The model performed better
than previous YOLO versions, especially for small objects,
while maintaining real-time efficiency. In [10] and [11], the
performance difference between YOLO v7 and v8 for traf-
fic signal detection was analyzed, concluding that YOLOv8
performed better than YOLOv7. Both [10], [12] addressed
traffic sign detection problem in challenging conditions using
YOLOv8, with [12] proposing a combination of algorithms to
create a lightweight solution for traffic sign detection. In [13],
the TSD-YOLO is proposed, a traffic sign detection model
based on YOLO architecture, aiming to improve robustness in
autonomous driving scenarios. The model achieved strong de-
tection performance and was evaluated on large-scale datasets,
showing its potential for real-world deployment. In [14], the
YOLO-SG model (based on YOLOv5) focused on detecting
small traffic signs in complex scenes. By introducing new
elements to the solution architecture, the method achieved
better mAP and significantly reduced model size, showing
strong performance on GTSDB and TT100K datasets [7],
[9]. In the Brazilian context, a YOLO-based approach for
detecting and georeferencing vertical traffic signs on rural
roads was developed in [6]. The authors trained and com-
pared YOLOv5, YOLOv7, and YOLOv8 using the “normal-
brazilian-traffic-signs” dataset composed of over 3,000 labeled
real and synthetic images. YOLOv8 achieved the highest
mAP scores, particularly when the number of training epochs
was increased. This work demonstrates the applicability of
deep learning for automating road asset monitoring in less-
structured environments such as rural highways. Additionally,
all the previous works demonstrated the applicability of YOLO
in various contexts with the objective of detecting traffic signs.

C. Paper organization

The remainder of the paper is organized as follows. Sec-
tion II presents the materials and methods employed to build
the dataset and train the YOLOv11 model of our work.

2Dataset available at https://github.com/ludii-co/BRTSRD.

Section III presents and discusses the results obtained from
applying YOLOv11 on the images of the dataset. Finally, Sec-
tion IV concludes this work and presents some perspectives.

II. MATERIALS AND METHODS

In this section, we discuss the methodology used in this
work. We consider the traffic signs defined in the Brazilian
Traffic Sign Manual (MBST), particularly for the set of
Regulatory and Warning signs. Scenery images in different
environmental conditions were used to compose the dataset
employed for the detection and classification of traffic signs,
including its stages of training, validation, and testing.

In Section II-A, we provide details on how the dataset was
built. In Section II-B, we shortly revisit YOLO, its versions,
and present the model selected for our studies. In Section II-C,
we specify the hardware configuration employed and the
training process adopted for the model.

A. Dataset

In order to solve the proposed task, a small dataset was
created initially by manually collecting public images from
Google Images with the help of a browser extension3 The
traffic signs contained in these images were then labeled
manually1 and the annotations in YOLO format were saved
to text files paired to the images. This initial dataset was then
split into 70/20/10% subsets for training, validation, and test,
respectively. To cope with the reduced size of the dataset,
data augmentation was used to generate up to three additional
images for each training set entry considering the parameters
in Table I. Then, an initial YOLOv11 model (YOLO11m) was
trained using this dataset.

Table I
DATA AUGMENTATION PARAMETERS.

Augmentation Value
Crop 0% to 20%
Rotation -15° to +15°
Brightness -15% to +15%
Blur 0 to 2.5 pixels

After gathering a sufficient number of images (529 images
leading to 1589 images after data augmentation) to allow the
model to perform reasonably well, we began collecting road
videos from YouTube. For this initial study, we collected a
set of only six videos and wrote a Python script to extract
out of each video one frame every two seconds using the
FFMPEG utility [15]. We ran inference using the initial model
on the frames extracted of these videos and for those in which
some object was detected, the generated labeling was manually
verified and eventually corrected afterwards [3]. Each traffic
sign detected in an image was classified according to its MBST
code and the labeled data (namely, class numbers followed by
normalized bounding boxes) were saved in text files paired
to each image. The images were divided again into training,
validation, and test sets using a 70/20/10% split. From this
process, after data augmentation, a dataset of 6,043 images was

3For instance, Download All Images was used.

https://github.com/ludii-co/BRTSRD
https://chromewebstore.google.com/detail/download-all-images/ifipmflagepipjokmbdecpmjbibjnakm
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built featuring varying quality images sourced from different
Brazilian urban roads. Nevertheless, as it will be discussed
later, under-representation of some traffic sign classes is still
an issue for this and others works.

B. YOLO model

Over the past few years, YOLO passed through signif-
icant structural enhancements, becoming a state-of-art tool
for object detection, classification, and tracking. The authors
in [16] detailed the evolution of YOLO from its version 1
(YOLOv1) until one of its latest versions, YOLO-NAS. The
paper highlights the main architectural and methodological
advances in YOLO. YOLOv1 revolutionized object detection
by treating it as a single regression problem, using bounding
boxes and class probabilities for the entire image. YOLOv2
significantly enhanced accuracy while maintaining speed by
introducing anchor boxes learned via k-means clustering,
incorporating batch normalization, and employing a stronger
backbone. YOLOv3 further improved detection, especially
for small objects, by using three different scales and an
even more robust Darknet backbone. YOLOv4 represented
a consolidation of numerous best practices, integrating new
models in the backbone and in the neck of its architecture
for improved feature aggregation, along with advanced data
augmentation techniques. In particular, YOLOv4 consists of
backbone, neck, and head with the first being responsible for
extracting features from the image, the second being designed
to collect feature maps from different stages and help in better
feature extraction and fusion, and the third being used for
bounding box prediction and for classifying objects within
those boxes. YOLOv5 shifted to PyTorch, emphasizing us-
ability and deployment with various model sizes and an auto-
anchor mechanism for custom datasets. YOLOv6, developed
for industrial applications, featured a further improved back-
bone and moved towards anchor-free detection for faster infer-
ence, while YOLOv7 focused on “trainable bag-of-freebies”
and extended backbone to achieve state-of-the-art accuracy and
speed performance. YOLOv8, further refined the architecture
by defaulting to anchor-free detection, employing a decoupled
head, better feature reuse, and expanding its capabilities to
include instance segmentation and pose estimation. Finally,
YOLO-NAS stands out by leveraging Neural Architecture
Search (NAS) to automatically design highly efficient and
accurate models with quantization-aware blocks, aiming for
an optimal balance between performance and latency for real-
time applications. Each YOLO version has consistently pushed
the boundaries of real-time object detection by refining its
architectural components, loss functions, training strategies,
and deployment considerations. YOLOv11 [17], one of the
most recent YOLO version, is a further improvement of this
well-established framework for object detection, classification
and tracking. It was chosen for its fast processing, high
accuracy, and efficiency. It includes improvements for faster
and more efficient feature extraction, a convolutional block
with parallel spatial attention module for enhanced feature
processing that selectively applies attention, and a refined
overall architecture for improved feature aggregation. It also

offers multi-task support for several machine intelligence and
image processing algorithms, with full support for Graphical
Processing Units (GPUs) and easy-of-usage for the final users.
The generic architecture of YOLOv11 is presented in Fig. 1,
showing the three typical elements of the YOLO architecture:
backbone, neck, head. For more details, see [18].

Figure 1. YOLO V11 Architecture [18].

C. Hardware setup and training process

The manual pre-processing task for the datasets mentioned
in the previous sections was performed by the authors on
multiple laptop and desktop computers. Training, validation
and test of the corresponding YOLO models were performed
on a desktop computer equipped with an AMD Ryzen 7 5800X
processor (8 cores, 16 threads), 32 GB of DDR4 RAM, a
512 GB SSD, and an NVIDIA GPU GeForce RTX 3060 with
12GB of GDDR6 memory.

For all trained models, a batch size of 16 was adopted, and
the input images were resized to 640×640 pixels, standard
values for YOLOv11. The model was trained for 128 epochs,
using the best weights from a preliminary model as a starting
point. The initial learning rate was set to 0.01, with a final
learning rate factor of 0.01. The optimizer was set to auto,
allowing the framework to automatically select the most
appropriate option for the architecture (typically SGD with
momentum or Adam).

Additional default training parameters included a momen-
tum of 0.937, a weight decay of 0.0005, and a warm-up phase
of 3 epochs, with a warm-up momentum of 0.8 and a learning
rate of 0.1 for biases during warm-up. No dropout was applied
during training. The model was trained using 8 workers for
data loading, and a fixed random seed (0) was used to ensure
reproducibility. The total training time was approximately 5
hours and 17 minutes, with an average of 140 seconds per
epoch. The final YOLOv11m model contained 303 layers and
±20 million parameters, occupying 39.7 MB on disk.

III. RESULTS AND ANALYSES

In this section, we will discuss the metrics obtained after
training the full model and the measures taken to optimize
it. The three metrics analyzed herein are commonly used in
object detection and classification tasks.
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• Precision: percentage of correct positive predictions out of
all the instances the model labeled as positive. It reflects
how well the model avoids generating false positive.

• Recall: The percentage of correct positives from all the true
positives predictions. It is helpful to understand how well
the model can detect all instance of a class.

• Mean Average Precision (mAP): The area under the preci-
sion and recall curve for every class.
Additionally, the Intersection over Union (IoU) metric is

used in the performance assessment of the models. In object
detection, where the goal is to accurately predict bounding
boxes and compare them against the ground truth (original
bounding boxes from the input images), IoU serves to evaluate
the degree of overlap between predicted and corresponding
true boxes. It is calculated as the area overlap between
predicted and ground truth bounding boxes divided by the area
of their union. In this work, we have set our IoU threshold
at the default value of 70%. This means that for a predicted
bounding box to be considered valid, its overlap with the true
bounding box must be 70% or greater, otherwise the predic-
tion is disregarded. In addition, a confidence limit of 0.25
was adopted during inference, which is the default value in
the YOLOv11 framework. Detections with confidence scores
below this value were discarded to reduce false positives.

The performance metrics presented in this work, including
precision, recall, and mAP, were obtained from a single
training and evaluation run, utilizing fixed data splits and
a predefined random seed. Therefore, these results do not
include statistical measures such as standard deviation or
confidence intervals, which analysis are left for future studies.

While these point estimates provide a general indication of
the model’s effectiveness, we acknowledge the importance of
evaluating metric variability across multiple runs. As future
work, we intend to perform repeated experiments with varying
random seeds or adopt k-fold cross-validation to derive more
statistically robust performance indicators.

We initially evaluated the model on all classes listed in
Table III and obtained the metrics shown in Table II.

Table II
METRICS FOR ALL CLASSES.

Metric Precision Recall mAP
Value 61.8% 45.3% 40.7%

It can be observed that the metrics were suboptimal, pri-
marily due to many classes being under-represented in our
dataset. This situation can be easily identified in Table III
which provides details on our dataset composition. The same
problem occurs in other previous studies, but is often not made
explicit. This issue occurs because in real-world scenarios, not
all signs are equally probable to be found, making it difficult
to sample them in sufficient images for effective training.

Due to this, and in order to demonstrate that well-
represented classes can be efficiently detected and classified,
the ten best represented classes from Table III were selected
and an inference was performed only over them to assess
the model performance. As it can be seen in Table IV, the
performance metrics of the model for these specific traffic
signs are substantially superior than those values presented in

Table III
DATASET CLASSES AND NUMBER OF INSTANCES.

Classe Train. Valid. Test Classe Train. Valid. Test
R6A 859 216 107 A30C 3 1 1
R19 616 182 95 A47 3 1 0

R24A 380 117 66 A2A 3 1 0
R6C 358 91 56 R31 3 0 0
R6B 320 97 42 A24 2 3 1
R4A 154 32 15 R8A 2 1 1
R34 111 35 7 R35B 2 1 0
R32 89 31 19 A26B 2 0 3
R4B 87 25 10 R18 2 0 2
R1 71 15 6 A45 2 0 2

R5A 60 25 8 R21 2 0 0
R9 51 15 5 R17 2 0 0

R26 50 15 4 R11 2 0 0
R25D 47 19 9 A15 2 0 0
A14 37 13 4 R14 1 1 1

A30A 33 12 12 R8B 1 1 0
R15 31 4 6 A21C 1 1 0

A32B 30 11 8 R40 1 0 0
R25C 28 8 5 R39 1 0 0

R2 23 3 3 R38 1 0 0
R24B 21 2 1 R37 1 0 0

R3 19 5 4 R35A 1 0 0
A18 18 3 4 R30 1 0 0

R25B 15 11 2 R23 1 0 0
R25A 14 3 4 R22 1 0 0
R10 14 1 1 R16 1 0 0

A33A 13 2 1 R13 1 0 0
R33 13 1 3 A5B 1 0 0

A32A 12 4 3 A3B 1 0 0
R7 11 1 2 A34 1 0 0

R28 9 2 1 A20B 1 0 0
R29 8 0 0 A1B 1 0 0
A2B 6 2 2 A36 0 3 0
R36A 6 0 0 A43 0 2 0
A33B 5 2 1 A4A 0 1 0
R20 5 1 0 A3A 0 1 0
A12 5 1 0 A35 0 1 0
R27 5 0 0 A27 0 1 0
A37 4 1 1 A21E 0 1 0

R36B 4 1 0 A21D 0 1 0
R12 4 0 1 A30B 0 0 1
R5B 3 1 1 A17 0 0 1

Table II and approximate those of previous studies mentioned
in Section I-B.

Table IV
METRICS FOR THE TOP 10 MOST WELL-REPRESENTED CLASSES.

Metric Precision Recall mAP
Value 84.3% 80.6% 85.8%

An illustration of actual and predicted traffic signs can be
seen in Fig. 2. The trained model performed well on detecting
traffic signs in different conditions, including variations in
lighting (good and bad), distances (near and far) and image
quality as can be seen in the figure.

Fig. 3 shows the Precision-Recall curve used to evaluate
the model’s performance in the ten best-represented classes in
the dataset. The best-performing class is R19, with mAP50
equal to 96%, which, as shown in Table III, is the second
best represented class. Furthermore, it shows that this class
has precision and recall close to 1, indicating high model
effectiveness for this category, i.e., low rates of false positives
and false negatives. Conversely, class R5A has the worst
performance among the ten selected traffic signs, due to its low
frequency and visual similarity to other regulatory signs. In
addition, signs with well-defined geometric shapes and high-
contrast colors, such as R19 or R6A, tend to be better detected
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Figure 2. Example of labeled (left) and prediced (right) traffic signs.

by the model due to their distinct visual patterns. On the other
hand, small signs that contain a lot of text or are often partially
obstructed in real conditions tend to have lower detection and
classification accuracy.

Figure 3. Precision × recall curve.

For comparison against YOLOv11, with the same training
parameters, dataset and selecting the ten best represented
classes, we trained a YOLOv8 model and analyzed it results.
In our test, YOLOv8 achieved a precision of 58.8%, a recall
rate of 32.1%, and mAP of 35.7%. Nonetheless, a deeper
comparison among the performance of the different versions
is left as perspective for future studies.

The analyses herein show that the representation of the
classes has a great influence on the model’s performance,
pointing out, in the future, for an expansion of the dataset pri-
oritizing the increase of samples of underrepresented classes,
as to promote more balanced training and performance.

IV. CONCLUSIONS

This paper presents the performance of traffic sign detection
and classification with an off-the-shelf YOLOv11 model. The
obtained results, which are initial, show that the proposed
approach presents good performance both in terms of ac-
curacy and generalization capacity for scenes in different

conditions, showing promise for future use in road monitor-
ing and maintenance systems. As perspectives, we intend to
expand the database with specific records of Brazilian traffic
signs, including less common, damaged, or partially obstructed
signs, improve statistical analyses and better optimize hyper-
parameters. In addition, strategies for optimizing inference
time will be investigated aiming at applications on devices
with limited computing capacity, e.g., edge computing devices.
Other supervised learning techniques and adaptation to low
visibility scenarios, such as nighttime or rainy conditions, are
also foreseen as future research topics.
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