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GVNF-P: An Energy-Aware Genetic Algorithm for
VNF Placement in B5G Networks

Matheus Pantoja, Albert Santos, Reyso Teixeira, Rafael Vieira, Diego Cardoso

Abstract— This paper presents GVNF-P, a genetic-algorithm
framework that minimises energy consumption while placing
Virtual Network Functions (VNFs) for service function chains in
beyond-5G (B5G) cloud networks. The algorithm encodes Service
Function Chain (SFC) order within chromosomes, leverages a
server-centred power model that separates static and dynamic
costs, and employs problem-aware crossover and mutation oper-
ators to guide the search through feasible solutions. Experiments
on heterogeneous B5G topologies show that GVNF-P achieves
energy savings within 3% of an integer linear programming
optimum while reducing computation time by more than an
order of magnitude—dropping from 4.5 minutes to just 0.12
minutes—and keeping memory usage low under realistic traffic
and resource load conditions.

Keywords— Energy efficiency, B5G networks, NFV, VNF place-
ment, Genetic algorithm.

I. INTRODUCTION

Mobile traffic grows exponentially, driven by the prolif-
eration of connected devices and increasingly demanding
applications. In this setting, Network Function Virtualization
(NFV) replaces costly, inflexible proprietary middleboxes with
software-based Virtual Network Functions (VNFs) such as
firewalls (FW), Network Address Translation (NAT) and In-
trusion Detection Systems (IDS), all running on commodity
servers [1]–[3]. By decoupling function logic from dedicated
hardware, NFV lowers capital expenditure, accelerates au-
tomation and equips networks for the service diversity ex-
pected in beyond-5G (B5G) environments.

Each flow must still traverse a fixed sequence of VNFs—the
Service Function Chain (SFC)—for example FW → NAT →
IDS. When instances are scattered arbitrarily, some servers
are activated unnecessarily, while others remain under-utilised.
Such waste compounds an already serious picture: the In-
formation and Communication Technology(ICT) sector draws
roughly 109 GW worldwide [4]. In carrier-scale B5G clouds,
even small placement inefficiencies elevate operational costs
and the carbon footprint [5].

The crux of the problem lies in deciding how many in-
stances of each VNF to create and on which servers to
deploy them, under CPU and memory constraints and the order
enforced by the SFC. The decision space is combinatorial: as
the number of VNFs, servers and chains increases, it grows
explosively. Naïve strategies that simply disperse functions
or replicate instances to provide headroom switch on idle
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hardware, burn energy needlessly and diminish local traffic
consolidation—an issue intensified by heterogeneous loads
and topologies in B5G networks.

To address this bottleneck, we propose a Genetic Algorithm
(GA) placement framework that encodes the SFC order di-
rectly into the chromosome, limiting the search to feasible
solutions. The algorithm uses a power model distinguishing
static (idle) and dynamic (load-dependent) energy consump-
tion, promoting consolidation of VNFs on the minimum
number of active servers. Experiments on heterogeneous B5G
topologies show that the method achieves energy efficiency
close to an Integer Linear Programming (ILP) reference [5],
while drastically reducing computational cost. Key features
include: a compact chromosome encoding preserving SFC
order without repair; a unified objective function accounting
for static and dynamic power via a server-centric model; near-
optimal energy efficiency within a few percentage points of
ILP with significantly lower runtime; and a scalable, modular
framework validated across diverse B5G scenarios.

Fig. 1. A multiple source updating system enabled by NFV. Three SFCs
(depicted in three different colors) are integrated into the network.

The remainder of this article is organised as follows. Section
II reviews energy-aware NFV-placement research; Section III
presents the power model and problem formulation; Section
IV details the proposed GA; Section V describes the simu-
lation environment and discusses results; Finally, Section VI
concludes this work.

II. RELATED WORK

Several studies have addressed the VNF placement prob-
lem from diverse angles, such as latency minimization, load
balancing, energy efficiency, and scalability, using approaches
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ranging from exact models to heuristics and machine learning,
each with trade-offs in performance and computational cost.

In [6], a genetic algorithm was proposed to handle het-
erogeneous service demands by preserving VNF order within
chains. While effective in improving acceptance ratios, it does
not consider energy consumption. The method in [7] used a
Deep Q-Network to adapt placements dynamically, improving
convergence and resource use, but also overlooked energy ef-
ficiency. The ILP formulation in [8] achieved optimal latency-
aware placements, yet proved computationally infeasible at
scale. Conversely, the algorithm in [4] introduced energy-
aware decisions that significantly reduced power use, although
it lacked the flexibility of heuristic solutions.

In contrast, our approach integrates an SFC-compliant ge-
netic algorithm with a unified power model, enabling near-
optimal energy efficiency across servers, switches, and links,
while maintaining low computational cost and high scalability.

III. PROBLEM DEFINITION

The VNF placement problem involves deciding the number
and location of VNF instances and routing each demand
through its SFC. The solution must respect server CPU ca-
pacities, VNF processing limits, link bandwidth, end-to-end
delay requirements, and the function order without forming
cycles.

The objective is to minimise total energy consumption,
accounting for switch idle and active-port costs, server idle
and dynamic CPU usage, and link transmission power. A
solution is feasible if it satisfies all constraints and optimal if
it minimises energy usage. The problem is strongly NP-Hard,
even under simplified conditions [5].

A. System Model

The physical substrate is abstracted as a bidirectional graph
G = (N,L), where each vertex i ∈ N integrates a packet-
switching fabric with a general-purpose server that can host
one or more VNF instances. Every node exposes an aggregate
budget of CPU, memory, and storage; a VNF placed on the
node consumes a slice of those resources and triggers two
power components: a static cost for keeping the physical
machine powered on and a dynamic cost that scales with
the number of active VNF instances. Edges (i, j) ∈ L share
a uniform link-capacity budget that limits the sum of traffic
routed over them and incur an additional power cost only when
at least one flow is present.

Traffic is represented by a set D of service demands.
Each demand d = ⟨od, td, Bd, Cd⟩ specifies an origin node
od, a destination node td, a required bandwidth Bd, and an
ordered service-function chain Cd = (v1, . . . , vm) that must
be traversed between source and destination.

B. Constraints

C1 — VNF visitation:∑
i∈N

ui,f,d = 1, ∀d ∈ D, ∀f ∈ Cd. (1)

TABLE I
PRINCIPAL SETS, PARAMETERS AND VARIABLES.

Symbol Description Type
Sets

N Set of all nodes –
L Set of all links –
F Set of all VNFs –
D Set of all demands –

Parameters
Cr

i Capacity of resource r∈{CPU} on node i –
Cr

f Resource r required by one instance of VNF f –
B(i,j) Bandwidth of link (i, j) –
Bd Bandwidth requested by demand d –
Cd Ordered VNF chain required by demand d –
Bf Processing capacity of one VNF–f instance –
Df Processing delay introduced by VNF f –

D(i,j) Propagation delay on link (i, j) –
Dd End-to-end delay bound for demand d –

Psm, Pmm Idle / peak server power –
Pss, Pp Idle switch power / per-active-port power –

Decision variables
xi 1 if the server at node i is powered on bin.
yi 1 if the switch part of node i is powered on bin.

l(i,j) 1 if link (i, j) carries any traffic bin.
zi,f Number of VNF–f instances deployed on node

i
Z≥0

ui,f,d 1 if demand d is processed by VNF f on node
i

bin.

wf→g
(i,j),d

1 if segment (f→g) of demand d is routed over
link (i, j)

bin.

Equation (1) forces each demand to be processed exactly
once by every VNF that appears in its service-function chain,
selecting one—and only one—physical node to perform each
step.

C2 — Usage / placement consistency:

ui,f,d ≤ zi,f , ∀i ∈ N, ∀f ∈ F, ∀d ∈ D. (2)

Whenever a flow claims that VNF f handles it at node i,
inequality (2) guarantees that at least one instance of f is
really deployed there.

C3 — Node CPU capacity:∑
f∈F

CCPU
f zi,f ≤ CCPU

i , ∀i ∈ N. (3)

The cumulative CPU demand of all VNF instances placed on
a node may not exceed that node’s hardware limit.

C4 — Per-VNF throughput capacity:∑
d∈D

Bd ui,f,d ≤ Bf zi,f , ∀i ∈ N, ∀f ∈ F. (4)

Traffic forwarded through a given VNF on a node is bounded
by the aggregate processing rate provided by the instances of
that VNF hosted there.

C5 — Link capacity:∑
d∈D

∑
(f,g)∈Cd

Bd w
f→g
(i,j),d ≤ B(i,j), ∀(i, j) ∈ L. (5)

The left-hand summation collects the bandwidth of all virtual
segments routed over link (i, j); it must not exceed the
physical bandwidth of the link.
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C6 — Flow conservation:∑
j:(i,j)∈L

wf→g
(i,j),d −

∑
j:(j,i)∈L

wf→g
(j,i),d = ui,f,d − ui,g,d, (6)

for every demand d, each consecutive pair (f, g) in its chain,
and every node i. Incoming and outgoing units of the virtual
segment balance at every intermediate node, while a posi-
tive/negative right-hand term injects (absorbs) the flow where
the segment originates (terminates).

C7 — Origin and destination anchoring:

uod,ffirst,d = 1, utd,flast,d = 1, ∀d ∈ D. (7)

Equation (7) pins the first function of the chain to the physical
source node od and the last function to the physical destination
td, thereby ensuring that traffic enters and leaves the substrate
at the correct locations.

C8 — Loop avoidance: single egress:∑
j∈N

∑
f∈F

∑
g∈F

wf→g
(i,j),d ≤ 1, ∀i ∈ N, ∀d ∈ D. (8)

A demand may leave a node at most once, which removes the
possibility of routing cycles and reduces unnecessary switch
activations.

C9 — Loop avoidance: single ingress:∑
j∈N

∑
f∈F

∑
g∈F

wf→g
(j,i),d ≤ 1, ∀i ∈ N, ∀d ∈ D. (9)

Symmetric to C8, a demand can enter a node only once.
C10 — End-to-end delay:∑
i∈N

∑
f∈F

Df ui,f,d +
∑

(i,j)∈L

∑
(f,g)∈Cd

D(i,j) w
f→g
(i,j),d

≤ Dd, ∀d ∈ D.

(10)

Equation (10) ensures that, for each demand d, the total
latency—computed as the sum of the processing delays Df of
all VNFs in its chain and the propagation delays D(i,j) over
the chosen physical links—does not exceed the per-demand
SLA Dd.

C11–C13 — Activation implications:

wf→g
(i,j),d ≤ l(i,j), ∀(i, j) ∈ L, d, f, g, (11a)

l(i,j) ≤ yi, ∀(i, j) ∈ L, (11b)
zi,f ≤ xi, ∀i ∈ N, f ∈ F. (11c)

Because all variables are binary, the simple inequalities in (11)
suffice to capture the logical relations: a link is active only if
some flow traverses it; a switch is powered on when at least
one incident link is active; and a server is powered on when
it hosts at least one real VNF instance.

C. Energy Objective
Server power consumption:

Psrv = Psm

∑
i∈N

xi +
(
Pmm−Psm

)∑
i∈N

∑
f∈F

CCPU
f

CCPU
i

zi,f . (12)

The first term represents the static idle power of every
powered-on physical machine; the second term is a linear
approximation of the dynamic component proportional to CPU
load contributed by the hosted VNFs.

Switching-fabric power consumption:

Pnet = Pss

∑
i∈N

yi + 2Pp

∑
(i,j)∈L

l(i,j). (13)

Each active switch incurs an idle cost Pss; every active link
lights two ports, hence the factor 2 multiplying Pp.

Global objective:

min Ptot = Psrv + Pnet. (14)

Minimising Ptot simultaneously drives server consolidation
and path shortening, delivering an energy-efficient placement-
and-routing solution while all constraints (1)–(11) safeguard
capacity, consistency and quality-of-service requirements.

IV. PROPOSED METHOD: GVNF-P ALGORITHM

Building upon the mathematical formulation of Section III-
B, we designed GVNF-P—a Genetic Algorithm whose evo-
lutionary components are tailored to the subtleties of VNF
placement. Whereas traditional GAs treat chromosomes as
abstract bit strings, GVNF-P integrates knowledge of the
SFC, heterogeneous server capacities, and the unified power-
consumption model, guiding the search almost exclusively
through feasible—and energy-efficient—regions of the solu-
tion space.

A. Chromosome Encoding

Let F = {f1, . . . , fm} denote the ordered set of network
functions in the SFC, and N the set of physical nodes. A
chromosome is the ordered vector

c = [n1, n2, . . . , nm], nk ∈ N ,

where gene nk specifies the host of function fk. This mapping
is bijective: decoding c 7→ Z yields a unique allocation matrix,
and no chromosome can violate the SFC order.

a) Seeding Strategy: The initial population mixes:

(i) guided individuals that place the most CPU-intensive
functions on the most energy-efficient servers; and

(ii) purely random individuals for broad exploration.

B. Fitness Evaluation

For a chromosome c, the fitness is defined as follows:

fit(c) = Psrv(c) + Pnet(c) if all constraints are satisfied;

fit(c) =M otherwise,

with M ≫ maxPtot. Constraints are tested—CPU, per-
VNF throughput, activation consistency, energy—in that order,
aborting at the first violation to save computation.
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TABLE II
CHARACTERISTICS OF THE SERVICE TYPES AND THEIR RESPECTIVE SFCS, BANDWIDTH, ALLOWABLE DELAYS, AND TRAFFIC PROPORTIONS

Service Type Web Service VoIP Video Streaming Online Gaming
VNF Chain NAT–FW–TM–WOC–IDPS NAT–FW–TM–FW–NAT NAT–FW–TM–VOC–IDPS NAT–FW–VOC–WOC–IDPS
Bandwidth 100 kbps 64 kbps 4 Mbps 50 kbps
Delay 500 ms 100 ms 100 ms 60 ms
% Traffic 18.2 % 11.8 % 69.9 % 0.1 %

C. Problem-Aware Operators
The GVNF-P algorithm employs problem-aware evolution-

ary operators. Selection is performed through a deterministic
tournament of size k, ensuring competitive pressure among
individuals. The crossover operator adopts a power-balanced
one-point strategy, in which a cut point q is drawn uniformly at
random, and parent chromosomes exchange their suffixes only
if the resulting offspring respect the CPU constraints of all
servers. Mutation is implemented as a capacity-guided reset:
each gene is subject to mutation with probability pm, selecting
a new node in proportion to its available CPU resources.

a) Robustness mechanisms: GVNF-P embeds two safe-
guards directly in the evolutionary loop of Algorithm 1: (i)
elitism, which copies the best µ individuals unchanged into
the next generation; and (ii) an adaptive mutation schedule,
which increases pm by ∆ whenever the global best solution
stalls for Tstall generations.

Algorithm 1 GVNF-P: Energy-Centric GA for VNF Place-
ment (compact)
Require: POP, GEN, k, pc, p0m, ∆, Tstall, µ, M

0: P ← INITPOPULATION(POP); EVALFITNESS(P )
0: c∗ ← argminc∈P fit(c); pm ← p0m; stall← 0
0: for g = 1→ GEN do
0: P ′ ← ELITE(P, µ)
0: while |P ′| < POP do
0: Select p1, p2 by TOURNAMENT(P, k)
0: (o1, o2)← CROSSOVER(p1, p2, pc)
0: MUTATE(o1, pm); MUTATE(o2, pm)
0: EVALFITNESS({o1, o2})
0: P ′← P ′ ∪ {o1, o2}
0: end while
0: P ← P ′

0: if minc∈P fit(c) < fit(c∗) then
0: c∗ ← argminc∈P fit(c); stall← 0; pm ← p0m
0: else if (++stall = Tstall) then
0: pm∆; stall← 0
0: end if
0: end for
0: return c∗ =0

Every operator in GVNF-P pursues energy efficiency—the
search starts, mates, and mutates with power in mind. Elitism
guarantees steady progress, and adaptive mutation revives
diversity whenever improvement stalls, keeping the algorithm
both focused and exploratory.

V. SOLUTION EVALUATION METHODOLOGY

This section compares GVNF-P against two benchmarks:
Random, which assigns VNFs to nodes randomly, and ILP,

which provides the optimal solution. The comparison focuses
on energy consumption. The ILP formulation was imple-
mented in Pyomo and solved with CPLEX version 22.1.1. The
GA was implemented in Python 3.8.17 and all run on an Intel®

Core™ i7-7700 @ 3.60GHz with 16GB RAM, Linux Mint.
Experiments were repeated 10 times with varying workloads,
and averages are reported.

Service flows include video streaming (VS), web services
(WS), voice over IP (VoIP), and online gaming (OG), each
requiring specific functions and bandwidth (Table II).

Tests considered six VNF types: NAT, Firewall, Traffic
Monitor, WAN Optimization Controller, Video Optimization
Controller, and Intrusion Detection System. Demands were
generated and assigned to services according to traffic percent-
ages (Table II). Each VNF required 4 CPU cores and 200 Mb/s
processing capacity [9].

The simulations were conducted on the DFN topology
from SNDLib, comprising 10 nodes and 45 links [10]. Power
parameters followed [9]: each switch consumed 130W, active
links added 10W, and servers consumed 175W when idle and
up to 250W at full load. Each node included a 16-core server.
Five scenarios were evaluated, varying the number of demands
per node from 5 to 9, to analyse GVNF-P’s performance under
different workloads. For each case, GA hyperparameters (pop,
tor, gen, mut, cross) were automatically tuned using Optuna
(15 trials) and then applied across all evaluated scenarios, as
shown in Table III.

TABLE III
GVNF-P – OPTIMAL HYPERPARAMETERS

Dem. POP_SIZE TOUR GEN MUT CROSS

5 60 3 50 0.17 0.6
6 80 2 40 0.26 0.85
7 70 3 50 0.12 0.5
8 50 3 30 0.08 0.95
9 40 3 70 0.22 0.9

VI. RESULTS

Figure 2 compares the mean energy consumption (in watts)
of ILP, GVNF-P and the random baseline as the number of
demands per node increases from 5 to 9. ILP rises smoothly
from 1 380 W to 1 750 W; the values in parentheses—(30
W at 5 demands/node and 25 W at 9 demands/node)—denote
the standard deviation of each mean. GVNF-P closely follows
ILP, deviating by at most 3 %—from 1 420 W (20 W) to 1
770 W (18 W). In contrast, the random heuristic consumes
substantially more power, from 1 530 W (80 W) to 1 895
W (45 W), and exhibits the greatest variance, underscoring
GVNF-P’s near-optimal energy efficiency.
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Fig. 2. Average Energy Consumption

Fig. 3. Average Execution Time per Method

Figure 3 shows the mean solution time (in minutes) on the
DFN topology as demands per node grow from 5 to 9. ILP’s
runtime climbs from 0.10 min to 4.70 min; the numbers in
parentheses—(0.02 min at 5 demands/node and 0.45 min at 9
demands/node)—indicate the standard deviation around each
average. GVNF-P remains consistently efficient, varying only
from 0.12 min (0.03 min) to 0.18 min (0.05 min). The random
method is essentially instantaneous (0.02 min, 0.005 min) but
offers no energy-efficiency guarantees.

Figure 4 plots the maximum RAM consumption (in
megabytes) observed as demands per node increase from 5
to 9. ILP’s footprint grows from 230 MB to 285 MB;
the parentheses—(8 MB at 5 demands/node and 6 MB at 9
demands/node)—report the standard deviation of each mea-
surement. Both GVNF-P and the random assignment hold
steady around 120–125 MB, with minimal variation (1 MB),
highlighting the genetic algorithm’s very low memory over-
head.

VII. CONCLUSION

This work presented GVNF-P, a genetic algorithm tailored
for energy-efficient VNF placement in B5G networks. By en-
coding SFC order in chromosomes and using a unified power
model, GVNF-P closely matched the energy performance of an

Fig. 4. Peak RAM Usage

ILP baseline while reducing execution time by over an order
of magnitude and maintaining low memory usage. Hyper-
parameter tuning with Optuna ensured robust configurations,
and simulations on the DFN topology demonstrated scalability
under increasing demand.

Future work includes: (i) exploring alternative metaheuris-
tics, such as particle swarm optimization, to compare conver-
gence dynamics; (ii) testing under higher traffic loads (above
ten demands per node); and (iii) extending the model to a
multi-objective formulation that jointly minimises energy and
latency.
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