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Arithmetic Reconciliation for CVQKD Protocols
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Abstract— Quantum key distribution allows the distribution of
a secret key with applications to cryptography. Specially, continu-
ous variable quantum key distribution presents some advantages
over its discrete counterpart and involves a reconciliation protocol
where the continuous variable must be transformed to a binary
sequence common to both trusted parties. Recently proposed,
Arithmetic Reconciliation is one of the possible schemes. In this
paper, we evaluate the performance of this scheme both math-
ematically and through simulations, as also achieve expressions
and simulations for the obtained reconciliation efficiencies. These
results suggest that Arithmetic Reconciliation is a promising
technique in continuous variable quantum key distribution.

Keywords— Reconciliation, CYQKD, Cryptography, Distribu-
tional Transform.

I. INTRODUCTION

It is a well known fact that one-time pad is an encryption
technique that provides no information about the original
message to an untrusted party. In 1917, using an electrical
system, Gilbert Vernam implemented the one-time pad scheme
for crytography [1], and its perfect secrecy was proved by
Claude Shannon in 1949 [2]. However, one-time pad requires
a secret key that has at least the same length of the message,
which imposes difficulty to its usage. Quantum key distribution
(QKD) schemes, such as BB84 [3], allow a secure distribution
of the key, by the no-cloning theorem of quantum mechanics,
which guarantees that any measurement from an untrusted part
(Eve) in the quantum channel would disturb the coherent state
[4].

QKD schemes may be performed with discrete or con-
tinuous variables. Specifically, continuous variable QKD
(CVQKD) may use the quadratures of quantized electromag-
netic fields [5], [6], [7], [8] and presents some advantages
over the discrete variable QKD. Mainly, it is relatively easy to
implement with the existing telecommunications equipments,
allows higher secret rates [9], [10], [11], [12], and may be
used with room temperatures [4].

In CVQKD, the trusted parties to achieve the secret key,
Alice and Bob, share a noisy quantum channel. Thus, their
continuous variables will differ, and the reconciliation protocol
is one step in which one of these variables is discretized to a
random binary sequence (which will be the secret key). Alice
and Bob will exchange reconciliation messages publicly in
order to achieve a common secret key, and a posterior step
of privacy amplification must be performed to guarantee that
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Eve will not gain information about the key through these
reconciliation messages [9].

One of the proposed reconcilition schemes is Arithmetic
Reconciliation [13]. Firstly introduced in [14], it was further
defined and explored in reference [15], based in results from
the copula and information theories. Specifically, reference
[15] shows that the technique achieves maximum efficiency, in
reverse reconciliation, greater than 0.9, in a regime with SNR
less than -3.6 dB (with heterodyne measurements). The aim
of this paper is to highlight its performance with the use of
more subchannels, introducing the mathematical and simulated
values of bit error probability, considering a realistic scenario
where the maximum efficiency is not necessarily achieved.

In order to do so, in Section II, we summarize the Arithmetic
Reconciliation protocol. In Section IIT we present the bit error
probabilities for the second subchannel mathematically and
for other subchannels in a similar SNR range that is found
in optical channels. In Section IV we present the calculation
and simulations for reconciliation efficiency. Finally, Section
V concludes the paper.

II. ARITHMETIC RECONCILIATION

Considering the quantum channel as an Additive White
Gaussian Noise (AWGN) channel, after the sifting step, it is
assumed that Alice and Bob share two correlated Gaussian
sequences, denoted respectively by X and Y, referred to as
raw keys, with mutual information greater than zero, i.e.,
I(X;Y) > 0 [5]. Alice holds N realizations of X, corre-
sponding to her prepared quantum states, while Bob holds
N realizations of Y = X 4+ /NZ, where X,Z ~ N(0,1),
X L Zand N=1/SNR.

To ensure that the keys match, an information reconciliation
step is required, in which the Gaussian values are quantized
and error correction is applied — typically through a Binary
Correction Protocol (BCP) [9]. Error correction is generally
performed using LDPC codes, as they operate close to the
Shannon limit even under low-SNR conditions (around 0
dB) and offer lower decoding complexity compared to other
powerful code families, such as Turbo Codes [16], [17], [18].

The reconciliation step occurs over an authenticated clas-
sical channel, assumed to be error-free, through which the
eavesdropper may observe the exchanged messages but cannot
tamper with them. Let I(X;Y") denote the mutual information
between Alice and Bob’s raw keys; in practice, only a fraction
BI(X;Y) of this mutual information can be extracted, with
B < 1 representing the reconciliation efficiency [19], [13].
Therefore, assuming a sufficiently efficient BCP-based recon-
ciliation scheme, the protocol is expected to yield S1(X;Y) —
X Ag bits per transmitted state under direct reconciliation, and
BI(X;Y)— xpE under reverse reconciliation where y 4 and
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xBE are the Holevo bounds for the information accessible to
Eve about Alice’s and Bob’s keys, respectively [19], [15]. The
reconciliation efficiency 8 depends on both the quantization
technique and the error-correcting code employed.

The most widely adopted reconciliation techniques include
the Slice Error Correction (SEC) protocol [9], [19] and Mul-
tidimensional Reconciliation (MD-Reconciliation) [20], [10],
which enable the generation of binary sequences from con-
tinuous values, allowing the subsequent application of error-
correcting codes. An alternative to these protocols is the quan-
tization technique proposed by Aradjo and Assis [13], which
is based on Lemma 1, derived from Arithmetic Source Coding
and inspired by the Shannon-Fano-Elias coding scheme [21].
This method significantly simplifies the process by eliminating
the need for optimal estimator search for slicing functions
(as required in SEC) and for algebraic multidimensional
rotations (as required in MD-Reconciliation). The technique
is comprehensively described in [13], [15], [22].

Lemma 1: Let V be a random variable with a continuous
distribution function F'(V'), define U = Fy (V) its cumulative
distribution function. So, U is uniformly distributed on [0, 1].

Lemma 1 is known in Copula Theory as the "Distributional
Transform" [15], and ensures that transforming a random
variable with a continuous distribution function (CDF) through
its own cumulative distribution function (CDF) always results
in a uniform distribution over the interval [0,1]. The bits
resulting from the binary expansion of a random variable with
distribution unif ~ [0,1] are independent and Bernoulli (%)
[21]. Figure II illustrates the configuration considered during
the quantization step, where the quantum channel is modeled
as an AWGN channel with correlation p(X,Y"), followed by
the mappings X — Fx(X) —» U and Y — Fy(Y) — V,
such that each realization of X is transformed into a corre-
sponding bit sequence with m-bit precision: x; — uiusg . . . U,
(similarly for y; — vive ... vp).

Quantum Channe

_ 1
{U = Fx (X)} X,Z ~N(0,1) {(V =Fy(Y)}
__1
= SNR
{U=XU27"} (V=XV}
Fig. 1. Initial setup of Arithmetic Reconciliation, modeling the quantum

channel as an AWGN channel with correlation p(X,Y’), where X represents
Alice’s sequence and Y corresponds to Bob’s. Alice and Bob compute
the cumulative distribution functions (CDFs) of their respective Gaussian
sequences, and subsequently perform binary expansions of the resulting
values, yielding the variables U and V/, respectively.

The transformation of X and Y by calculating the CDF
preserves the initial mutual information, ie. I(X;Y) =
I(Fx(X); Fy(Y)) because mutual information is invariant to
homeomorphisms and the CDF is considered to be one of them

[23]. Alice and Bob can then use this technique to produce
correlated binary sequences from the continuous data of their
raw keys. Since the bits generated in the binary expansion are
independent of each other, the sequences U; = uq, ..., u; and
Vi=v1,..,v5, for 1 <7 <nandj=1,..,m, the bits of the
j-th position in U and V are correlated and can be treated as
memoryless BSC (Binary Symmetric Channel) channels with
inversion probability e; = Pr[Us(;y # Vi(;] [24], which can
be obtained analytically or computationally.

III. PERFORMANCE OF THE ARITHMETIC
RECONCILIATION SUBCHANNELS

A. Performance analysis for the second Subchannel

In [25] we considered the bit error probability for the first
subchannel (5 = 1). Now we will specialize to the second
subchannel (j = 2).

The following remark will be useful soon. Consider the
numbers 27%, ¢ = 1,2,..., let us compute the reals y; =
Fy 1(27%) in terms of the standard normal distribution.

27 = " ;eféNﬂ du
—oo /27(N + 1)

/yi/vN+1 1 2

v

m677dv
()

_ @<FY1(2”>>
N+1

From the last equality, inverting the the distribution function
®(-) we obtain

— 00

Fyl(27) = \/1+7N<1>—1(2—i) (1)

Yi =
~ J14 Lo (2*2') )
o SNR
= 1+—1 x; (3)
a SNR™

where, for ease the notation we set z; = &1 (2_i).
Now, let us define the event :

E={Uy=0,V, =1}

Event E can happen in four mutually exclusive ways:

E, = {Fx(X)<1/4n1l/4< Fy(Y)<1/2}

Ey, = {Fx(X)<1/4AnFy(Y)>3/4}

E; = {1/2<Fx(X)<3/4Nn1/4<Fy(Y)<1/2}
Ey = {1/2<Fx(X)<3/4NFy(Y) > 3/4}

E = UL_,E;,

and we will describe them in terms of the variables X and Z,
considering the correct limits of integration of the bivariate
normal density fxz, as shown next (and illustrated in Figure
2).
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Pr[Ey] = Pr[X <& 1(1/4),F,1(1/4) <Y < Fy'(1/2)]
= Pr[X<:E2,y2<X+\/NZ<O}
y2 — X
VN
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—00 y%z 2
21 2
= —e 2
/;{x; \/271'
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= e 2
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= Pr[X<x2, <Z< -

)
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Fig. 2. Integration region for event ;.

Similarly, we may evaluate the probabilities associated with
Eg, E3 and E4.

Figure 3 illustrates the evaluated bit error probability, as
also the curve for the simulated channel (as expected, both
curves achieve similar values).
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Fig. 3. Simulated and calculated (2 X Pg versus SNR) bit error probabilities
for the second channel.
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B. Performance of the other subchannels

Figure 4 shows the error probability for 7 BSC channels
obtained with quantization in a very low SNR region (from
—20 to 2 dB). Figure 5 shows the capacity of each channel,
calculated by C; = 1 — h(e;), where h(e;) is the binary
entropy h(e) = —elog(e) — (1 — e) log(1 — e).
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Fig. 4. Average error probability of each subchannel for m = 7, obtained
through simulations with 1000 samples for each SNR value in the range from
—20 to 2 dB.
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Fig. 5. Capacity of each BSC channel obtained after quantization, in SNR
region from —20 to 2 dB, calculated from the error probabilities obtained
previously.

IV. RECONCILIATION EFFICIENCY

The reconciliation efficiency depends on the quantization
efficiency and the error-correcting code used in each channel.
With regard to quantization, the aim is to maximize the mutual
information between the bits produced for each realization
of X, U, and the Gaussian values of Y, I(U;Y). The
quantization efficiency indicates how much of the mutual
information I(X;Y’) has been preserved. Considering a mul-
tilevel coding (MLC) scheme, each channel obtained from
quantization will be coded independently from the syndrome
calculation (Slepian-Wolf Coding), using a LDPC code with
rate R; (1 < ¢ < m). Although the use of Slepian-Wolf
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coding transforms the problem into a case of Distributed
Source Coding (DSC), where syndrome computation is treated
as a form of source compression, [22] shows that the decoding
algorithm can only successfully recover the sequences when
the capacity of the Binary Symmetric Channel (BSC) exceeds
the code rate — thus characterizing it as a channel coding
problem. Since this rate is limited by the capacity of each
channel, the use of real codes will introduce another source
of inefficiency.

In a similar way to the calculation of the SEC protocol’s
Reconciliation Efficiency presented by Jouguet and others
[19], Dias and Assis [15] derived the expressions for the
maximum reconciliation efficiency achievable with Arithmetic
Reconciliation, i.e. when ideal codes are used with R; = C;.
Considering a direct reconciliation scheme, the maximum
quantization efficiency ;" is given by:

LIy SRy,
Tmer (XY I(x;y) 7
where U = 7", U;27% and
I(U;Y) = HU) — HUY). )

H(UY) is the minimum amount of information that Alice
can transmit over the classical channel (maximum compres-
sion) that allows Bob to reconstruct U. Assuming that there
are d quantization intervals on the unit interval, with d = 2™,
so p(d) is the same for all intervals, and that the bits in the
binary expansion are equiprobable, then:

H(U) = Y H(U)

om

:_Zp

Substituting 5 in 4 and considering the approximation
HU|Y) ~ >, h(e;), as occurs in [9], I(U;Y) can be
rewritten as:

-logy p(d) = m. (6)

m

I(U;Y) =m =Y h(e). (7)
i=1
Since C; =1 — h(e;):
I(U;Y) =) C. ®)
i=1
o maz Will be given by:
27‘21 Ci

— — 7
q max ~ I(X, Y) . (9)

Similarly, the maximum quantization efficiency for a reverse
reconciliation scheme can be calculated by:

— _Zglf(vz';X)
I(X;Y)

q maxr ~
The Lemma 1| guarantees that Fy (Y') has a uniform dis-
tribution on [0, 1], and that therefore the d intervals in the

(10)

calculation of V are also equiprobable, even if the noise
makes the limits (71,...,7_1) in Y different from those in
X. Therefore, the same considerations - H(V) = m and

H(V;X) =" h(e;) - can be made:
L HY) - HVIX)
s =TI Y)
. m—m + ZZil Cl
I(X:Y)
_ Z?ll Gi
TIXY) (1n

It can then be seen that there is symmetry between direct
and reverse reconciliation, leading to the same performance,
ie. I(U;Y) =I(V;X) [15].

Assuming that in real systems the channel capacity is not
fully utilized and the individual error-correcting codes of each
subchannel have rate R; < C}, the efficiency over the entire
reconciliation system, considering sub-optimal codes, is given
by:

B —

SR,
) (2

X;Y)
Since the code efficiency 5. = % is seen as the ratio

between the rate of real codes and ideal ones, 3 can be
rewritten as:

o 2211 ﬂccz
f=SELE (13)
ﬁ = ﬂcﬁdisc- (14)

It can then be seen that reconciliation efficiency depends
directly on the rate of the available codes R; and how close
they are to the capacity of each channel.

Some investigations have been carried out in order to
evaluate the reconciliation efficiency of the proposed technique
in the range from —20 to 2 dB of SNR and how much the
increase in the number of channels adds to the mutual informa-
tion achieved. Figure 6 shows the mutual information I(U;Y)
with m = 1,...,7 bits of quantization precision, compared to
the mutual information of the Gaussian channel, which serves
as the upper bound. Figure 7 shows the quantization efficiency
obtained with the same bit levels. It can be seen that above 3
bits of quantization the gain in mutual information achieved
is not significant and that the quantization efficiency improves
as the SNR decreases, which makes the technique promising
for application in CVQKD protocols.

The results corroborate what was obtained in [13], in which
it was shown that from the 4th channel onwards, the high error
probabilities between the quantized sequences mean that the
channels are not suitable for key sharing. The 3rd and 4th
channels, however, can be disclosed without coding to help
correct the most significant bits and then discarded, similar to
what happens in the SEC protocol [9], [19], depending on the
error correction technique to be used.
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Fig. 6. Mutual information I(U;Y’) obtained for different quantization
precisions (m = 1,...,7 bits), in comparison with the mutual information
of the Gaussian channel, considered the theoretical upper bound.
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Fig. 7. Quantization efficiency 8 = I(U;Y)/I(X;Y’) for varying quanti-
zation precisions (m = 1,...,7 bits). The results highlight the diminishing
gains in efficiency beyond 3 bits and the improved performance at lower SNR
values.

V. CONCLUSIONS

In this paper we reviewed the Arithmetic Reconciliation
technique, evaluating its performance mathematically and with
simulations in regions with low SNRs, as found in real
scenarios. We also presented the reconciliation efficiencies
expressions and the values obtained in simulations. The results
indicate that Arithmetic Reconciliation technique is a promis-
ing technique in the context of CVQKD.
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