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Abstract— Quantum communication protocols offer theoreti-
cally unbreakable security by leveraging the fundamental prin-
ciples of quantum mechanics. Among them, the DL04 protocol
enables direct, deterministic secure communication without re-
quiring a pre-shared key. However, practical implementations
remain vulnerable to performance degradation due to channel
losses, detector inefficiencies, and increased QBER, which may
compromise security. This paper presents a machine learning-
based framework for predicting operational failures and assessing
security risks in DL04 QSDC systems. A dataset of 48 simulated
scenarios was generated, varying key physical parameters such as
attenuation, depolarization, and detector efficiency over a range
of transmission distances. Using regression models—including
ensemble methods such as Gradient Boosting and Random For-
est—we achieved highly accurate predictions of secure key rate
and QBER. These models enable real-time monitoring, anomaly
detection, and dynamic adjustment of protocol parameters,
enhancing both performance and security. Results demonstrate
that machine learning can effectively anticipate system behavior
under different conditions, providing a foundation for intelligent,
adaptive QKD systems. This approach represents a significant
step toward resilient quantum communication architectures,
particularly under realistic noise and hardware constraints.
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I. INTRODUCTION

The exponential growth in data generation, transmission,
and consumption has pushed modern communication systems
to their limits in terms of both capacity and security [1].
As classical communication approaches the boundaries of
Shannon’s limit and becomes increasingly vulnerable to so-
phisticated cyberattacks, new paradigms are needed to ensure
the confidentiality, integrity, and efficiency of data exchange
[1][2]. In this context, quantum communication has emerged
as a promising solution, leveraging the principles of quantum
mechanics to enable fundamentally secure information trans-
fer and potentially revolutionize long-distance communication
infrastructures [3][4].

At the heart of quantum communication lies the exploitation
of quantum properties such as superposition, entanglement,
and no-cloning, which enable information to be encoded and
transmitted in quantum states, typically represented by qubits
[5]. Quantum key distribution (QKD) protocols, for instance,
utilize these properties to enable two parties—commonly
referred to as Alice and Bob—to establish a shared secret
key that is theoretically immune to interception [6][7]. Any
attempt by an eavesdropper (Eve) to measure or duplicate the
quantum states inevitably introduces disturbances that can be

detected by the legitimate users, thus providing an intrinsic
security layer that classical systems lack [8].

Among the various QKD protocols developed, the DL04
protocol stands out as a practical and robust approach for
deterministic secure direct communication [9]. It is based on
the controlled manipulation of quantum states and enables
direct transmission of secret messages without requiring a
pre-shared key. However, in practical implementations, several
challenges arise, such as operational failure due to channel
noise, detector imperfections, and potential security vulnera-
bilities in the presence of malicious interference [7]. These
factors can lead to increased quantum bit error rate (QBER)
and compromised secure key rates, both of which degrade the
overall reliability and safety of the quantum communication
system [7].

To address these issues, this study proposes a machine
learning-based framework to enhance the reliability and se-
curity of the DL04 quantum secure direct communication
(QSDC) protocol. By leveraging supervised learning tech-
niques, we aim to predict and monitor the QBER and secure
key rate under varying operational conditions. Our models are
trained on simulation data that incorporate realistic physical
channel parameters, enabling accurate forecasting of system
performance and the early detection of potential anomalies or
failures. This predictive capability not only supports dynamic
adaptation of protocol parameters but also contributes to real-
time security assessment, offering a significant step toward
practical and resilient quantum communication systems.

A. Contributions
This study makes several significant contributions to the

field of quantum communication, particularly in enhancing
the security and operational reliability of the DL04 QSDC
protocol. Firstly, it introduces a novel dataset comprising 48
distinct QKD scenarios across multiple transmission distances,
which enables the training of supervised learning models for
accurately predicting system performance indicators, such as
the measured QBER and secure key rate. Secondly, the study
demonstrates the effectiveness of various machine learning
models—especially ensemble methods like Gradient Boosting
and Random Forest—in predicting these key performance
metrics with high accuracy. Such predictive capabilities can
facilitate real-time system monitoring and the proactive ad-
justment of protocol parameters. Furthermore, by modeling
QBER using regression techniques, the research highlights
how machine learning can also serve in assessing secu-
rity risks, identifying anomalies that may signal threats like
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eavesdropping or system malfunctions. Finally, the proposed
approach lays the groundwork for developing intelligent QKD
systems, promoting the integration of artificial intelligence
into quantum communication to enable data-driven decision-
making and dynamic protocol adaptation based on real-time
insights.

II. RELATED WORKS

Bommi et al. [10] present a robust integration of machine
learning techniques into the BB84 protocol, aiming to optimize
QKD in practical settings plagued by noise, eavesdropping,
and hardware imperfections. Their approach utilizes deep
learning for photon state optimization, unsupervised learning
for anomaly detection, and reinforcement learning for adaptive
parameter tuning, yielding notable improvements in key gener-
ation rate (25%), QBER reduction (33.3%), and eavesdropping
detection (7.8% gain). While their work demonstrates the
effectiveness of machine learning for increasing system effi-
ciency and robustness, it largely focuses on BB84 and general
QKD protocols. Our work advances this direction by targeting
the DL04 QSDC protocol—offering direct message transmis-
sion instead of key generation. Furthermore, our contribution is
unique in generating a specialized dataset simulating realistic
noise conditions and applying regression models to predict
both QBER and secure key rate, enabling real-time anomaly
detection and adaptive protocol control.

Mafu’s [11] review systematically explores the application
of ML and AI to quantum communication paradigms, includ-
ing QKD, quantum teleportation, and quantum networking.
It highlights how models such as random forests, neural
networks, and reinforcement learning have been employed for
tasks like parameter optimization, attack detection, and long-
term system stability. For instance, it cites machine learning-
enhanced calibration using long short term memory (LSTM)
and secure key rate predictions through ensemble models.
However, Mafu’s paper primarily aggregates and discusses
existing machine learning integrations across various protocols
rather than proposing and validating a specific implemen-
tation. In contrast, our study builds a concrete, simulation-
based experimental framework for the DL04 QSDC protocol
and rigorously benchmarks multiple machine learning mod-
els, demonstrating Gradient Boosting’s superior performance
in predicting critical security parameters, thus contributing
a practical and reproducible pathway for intelligent QSDC
systems.

III. METHODS

This section details the methodology employed to generate
a comprehensive dataset for benchmarking the performance of
an entanglement-based QKD protocol over optical fiber. The
simulation framework incorporates key physical limitations
of the transmission channel and detector imperfections to
evaluate the achievable QBER and secure key rate under
various operational parameters. In this entanglement-based
QKD scenario, Alice and Bob aim to establish a shared
secret key by exploiting the properties of entangled quantum
states [11]. The security of the key distribution relies on the

fundamental principles of quantum mechanics, such as the no-
cloning theorem and the disturbance caused by measurement.
While the current simulation primarily focuses on the legit-
imate communication between Alice and Bob under channel
noise and detector limitations, the underlying security analysis
in QKD inherently considers the potential presence of an
eavesdropper, typically referred to as Eve.

The process begins with entangled pair generation, where
Alice prepares pairs of entangled qubits. In this simulation,
the initial quantum state is assumed to be the Bell state [12],
represented mathematically as

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩). (1)

Once entangled, distribution takes place. Alice retains one
qubit from each pair and transmits the other to Bob through
a quantum channel, typically implemented as an optical fiber.

Following transmission, the measurement stage occurs.
Both Alice and Bob independently measure their respec-
tive qubits [11]. For a selected subset of the entangled
pairs—defined by a predetermined security check frac-
tion—they publicly disclose their measurement bases and
outcomes. This information is used to estimate the QBER.
For the remaining pairs, the measurement results are kept
secret and used to derive a shared cryptographic key. The
security of this key relies on the strong correlations induced
by entanglement and the sensitivity of quantum states to any
external disturbance.

Finally, eavesdropping is considered in the security analysis.
An adversary, Eve, may attempt to intercept or measure the
qubits exchanged between Alice and Bob in order to gain
information about the key. However, due to the no-cloning
theorem and the inherent disturbance caused by quantum
measurements, such actions would increase the QBER [11].
During the security check, if the measured QBER remains
below a defined threshold, Alice and Bob can infer that
the influence of any eavesdropper is negligible. Any residual
information potentially accessible to Eve can then be elimi-
nated through classical post-processing steps such as privacy
amplification, ensuring a highly secure key.

While Eve’s actions are not explicitly simulated in terms
of directly implementing eavesdropping strategies, the impact
of her potential presence is implicitly considered through the
QBER threshold. A higher noise level in the channel (part
of which could be attributed to Eve’s interference) leads to
a higher QBER. If this QBER exceeds the pre-established
threshold, Alice and Bob would abort the key generation
process, as the security of the key cannot be guaranteed.
The QBER threshold is derived from security proofs that
quantify the maximum tolerable error rate in the presence of
an eavesdropper using optimal strategies.

Therefore, the simulation focuses on modeling the physical
channel limitations that contribute to errors detectable by Alice
and Bob (which would also be exacerbated by Eve’s presence).
The security of the QKD protocol is then evaluated based
on whether the observed error rate (QBER) is below a level
that theoretical security proofs guarantee resilience against
eavesdropping.
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A. Physical channel model

The simulation explores the impact of several crucial pa-
rameters on the performance of the QKD system. These
parameters are systematically varied across predefined ranges
during the experimental phase of the study. It is important to
emphasize that although the parameters are assigned specific
values in each simulation run (as detailed in Section IV), the
methodology is designed to capture their general influence on
system behavior.

One key parameter is optical fiber attenuation, denoted by
α and measured in decibels per kilometer (dB/km), which
represents the loss of photon intensity as it propagates through
the quantum channel [13]. The transmittance T over a distance
L (in kilometers) is given by the equation:

T = 10−
αL
10 . (2)

This directly affects the probability of successful photon trans-
mission, influencing the rate at which entangled photon pairs
can contribute to secure key generation. A higher attenuation
leads to fewer photons reaching Bob, thereby reducing the
overall key rate.

Another critical factor is the depolarization rate, denoted
by γ and measured in inverse kilometers (km−1), which
models the likelihood of qubit depolarization per unit length
of fiber [14]. The probability of depolarization over a distance
L is approximated as:

pdepol = min(1.0, γL). (3)

This depolarization introduces random Pauli errors (X , Y ,
Z) to the transmitted qubits, increasing the QBER. A higher
depolarization rate can push the QBER beyond the tolerable
security threshold, compromising key generation.

The efficiency of Bob’s detector, ηdet, is a dimensionless
parameter between 0 and 1 that represents the probability of
successfully detecting an incoming photon. This efficiency sig-
nificantly influences the probability of a successful Bell state
measurement when accounting for losses in the channel [12].
A low detector efficiency results in fewer detected entangled
pairs, thereby decreasing the secure key rate.

The security check fraction, fcheck, is also a dimensionless
parameter ranging from 0 to 1, which specifies the proportion
of entangled pairs used exclusively to estimate the QBER.
These pairs are sacrificed for monitoring purposes and are
not used for key distillation. While a larger check fraction
improves the accuracy of the QBER estimation, it simultane-
ously reduces the number of pairs available for key generation,
potentially decreasing the final key rate.

The QBER threshold, Qth, defines the maximum tolera-
ble QBER for the protocol to be considered secure. If the
measured QBER exceeds this value, the data is regarded as
compromised, and no key is distilled. This parameter plays
a vital role in determining both the maximum transmission
distance and the secure operating regime of the QKD system.

Additionally, the number of entangled pairs simulated per
parameter-distance combination, denoted by Npairs, affects
the statistical confidence of the simulation outcomes. A higher
number of simulated pairs provides more accurate estimates

of QBER and key rate but increases the computational com-
plexity and time required for simulation.

Lastly, the system performance is analyzed across a variety
of optical fiber distances, L, to understand how channel length
impacts secure transmission. Varying this parameter allows
researchers to determine the maximum secure distance for
each parameter set, offering insights into the scalability and
limitations of the QKD implementation.

B. Machine learning models proposed

In this study, we applied supervised machine learning
models to predict two key performance indicators of the
DL04 QSDC protocol: the QBER and the secure key rate per
entangled pair. The input features used for training include
optical fiber attenuation (α), depolarization rate (γ), detector
efficiency (ηdet), and transmission distance (L). These param-
eters were selected because of their direct influence on photon
loss and qubit disturbance during quantum communication.

The machine learning models evaluated include both linear
and non-linear regressors. Linear Regression was used as a
baseline model due to its simplicity and interpretability. To
address potential multicollinearity and improve generalization,
we also tested Ridge and Lasso regressions, which introduce
L2 and L1 regularization, respectively [15]. For capturing
non-linear relationships in the data, we employed a Decision
Tree Regressor, as well as two ensemble methods: Random
Forest and Gradient Boosting [16]. These ensemble models
are known for their robustness and high accuracy in complex
regression tasks. Additionally, a Multilayer Perceptron (MLP)
neural network was tested to evaluate the performance of deep
learning in this context.

C. Metrics

To evaluate the regression models used for predicting the
QBER and the secure key rate, we employed standard per-
formance metrics [16]. These metrics assess the discrepancy
between the predicted values ŷi and the ground truth values
yi across a total of N samples.

The first metric used is the mean squared error (MSE),
which penalizes larger errors more heavily and provides a
quadratic measure of prediction error:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2. (4)

The mean absolute error (MAE) offers the average magni-
tude of the errors, without considering their direction:

MAE =
1

N

N∑
i=1

|yi − ŷi|. (5)

Another useful metric is the root mean squared error
(RMSE), which is the square root of the MSE. It is expressed
in the same unit as the target variable, making it more
interpretable:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2. (6)
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Finally, we consider the coefficient of determination or
R2 score, which indicates the proportion of variance in the
dependent variable that is predictable from the independent
variables:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
. (7)

Values of R2 close to 1.0 represent better model fit.
These metrics provide complementary perspectives on

model performance and were computed for both QBER and
secure key rate prediction tasks across all evaluated models.

IV. EXPERIMENTS AND RESULTS

A. Simulation parameters

The dataset utilized in this study was generated through a
series of simulations designed to model the performance of
an entanglement-based QKD system [17]. These simulations
encompassed 48 distinct scenarios, systematically varying key
QKD parameters: optical fiber attenuation, depolarization rate
increase, and Bob’s detector efficiency, Table I. For each
scenario, the simulation calculated performance metrics across
a range of distances, generating data points for subsequent
analysis. Machine learning models were trained with the dual
objective of predicting two critical QKD performance indica-
tors: the measured QBER and the secure key rate per entangled
pair. This dual-target approach allows for a comprehensive
assessment of both the security and operational efficiency of
the simulated QKD system.

TABLE I
PARAMETERS FOR ENTANGLEMENT-BASED QKD - DATASET

GENERATION

Parameter Values/Description

Optical Fiber Attenuation (α) [0.18, 0.20, 0.22] dB/km
Depolarization Rate Increase (γ) [0.0005, 0.001, 0.002, 0.004] km−1

Bob’s Detector Efficiency (ηdet) [0.7, 0.8, 0.9, 0.95]
Security Check Fraction (fcheck) 0.5
QBER Threshold (Qth) 0.05
Pairs per Simulation Point (Npairs) 5000
Simulation Distances (L) np.linspace(1, 200, 100) km

B. Predicting security key rate

TABLE II
REGRESSION MODEL PERFORMANCE ON SECURE KEY RATE PREDICTION

Model MSE MAE RMSE R2

Linear Regression 0.00916 0.05838 0.0957 0.2598
Ridge Regression 0.00917 0.05831 0.0957 0.2592
Lasso Regression 0.00954 0.05161 0.0976 0.2309
Decision Tree Regressor 0.000060 0.00263 0.0077 0.9951
Random Forest Regressor 0.000042 0.00224 0.0065 0.9967
Gradient Boosting Regressor 0.000032 0.00232 0.0057 0.9974
Neural Network (MLP) 0.00177 0.00846 0.0421 0.9658

The results presented in Table II are highly relevant for
understanding and optimizing the performance of QKD sys-
tems. The main objective in QKD is to establish a secure key

rate between two parties (Alice and Bob) despite limitations
imposed by the physical transmission channel and various
system imperfections. Being able to accurately predict the
secure key rate based on system parameters is essential for
multiple reasons.

First, from a system design and optimization perspective,
the models enable predictions of secure key rate under di-
verse operational conditions, such as varying fiber lengths,
attenuation levels, and detector efficiencies. This predictive
capability supports informed decisions when designing the
system or tuning its parameters to maximize both the key
rate and transmission distance. For example, the models can
assist in evaluating the trade-off between detector efficiency
and maximum achievable distance.

Second, the models are useful for performance prediction
and real-time monitoring. By observing the system parameters
in operation, it becomes possible to anticipate potential drops
in secure key rate and implement proactive adjustments to mit-
igate disruptions. This also makes the models valuable for fault
diagnosis and troubleshooting. Significant deviations between
the predicted and measured key rates may indicate system
malfunctions or even potential security breaches, allowing the
models to help pinpoint the root cause of such issues.

Additionally, the models contribute to security assessment.
The QBER, which is intrinsically related to the secure key rate,
is a critical parameter for evaluating the system’s resilience.
Although the models focus on predicting the secure key
rate directly, their accuracy indirectly reflects how well they
capture the underlying physical and operational factors that
influence security.

Finally, in the context of a QKD network, the models
provide insights that aid in resource allocation. By predicting
the achievable key rates across different links, the system
can make informed routing decisions and optimize the overall
usage of network resources.

The high accuracy of the ensemble models (Random Forest
and Gradient Boosting) in predicting the secure key rate
suggests that these models effectively capture the complex
relationships between system parameters and performance.
This capability can be leveraged to develop more robust
and efficient QKD systems. However, the trade-off between
model complexity and computational cost must be considered,
especially in real-time applications.

C. Predicting QBER measured

Remember that the QBER is a crucial metric in QKD
because it quantifies the error rate in the transmission of
quantum information. In a secure QKD system, the QBER
must remain below a certain threshold to ensure that the
amount of information an eavesdropper (Eve) might have
obtained is limited and can be reduced to zero through post-
processing (such as privacy amplification).

The results show that ensemble models (Gradient Boosting
and Random Forest) are more effective at predicting QBER,
meaning they can provide more reliable estimates of the
expected QBER behavior, Table III. However, even for these
models, the R² isn’t close to 1, indicating that there’s some
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TABLE III
REGRESSION MODEL PERFORMANCE ON QBER PREDICTION

Model MSE MAE RMSE R2

Linear Regression 0.0725 0.2001 0.2693 0.2740
Ridge Regression 0.0780 0.2082 0.2792 0.2072
Lasso Regression 0.0795 0.2035 0.2819 0.1992
Decision Tree Regressor 0.1067 0.1450 0.3266 -0.0730
Random Forest Regressor 0.0667 0.1368 0.2582 0.3270
Gradient Boosting Regressor 0.0559 0.1317 0.2364 0.4394
Neural Network (MLP) 0.0681 0.1749 0.2610 0.2990

variability in the QBER that isn’t explained by the features
we are using. This could mean that other factors (not included
in the model) are influencing the QBER, or that there’s
an inherent level of randomness in the process. In terms
of security risk, this means that while you can use these
models to get an estimate of the expected QBER, you should
still exercise caution and design your QKD system to be
tolerant of unexpected deviations in the QBER. In summary,
QBER prediction models are valuable tools for enhancing
the security of QKD systems, enabling more sophisticated
monitoring, anomaly detection, and dynamic adaptation of
security protocols. However, it’s essential to interpret model
results cautiously and consider their limitations.

V. CONCLUSIONS

This study presented a predictive framework based on
machine learning to enhance the operational reliability and
security assessment of the DL04 QSDC protocol. By gen-
erating a comprehensive dataset simulating realistic physical
conditions—such as optical fiber attenuation, depolarization
effects, and detector inefficiencies—we trained and evaluated
several regression models to predict key performance indica-
tors, namely the QBER and secure key rate.

The experimental results demonstrated that ensemble-based
models, particularly Gradient Boosting and Random Forest,
consistently outperformed linear models and neural networks
in terms of prediction accuracy. These models achieved high
R² scores for secure key rate prediction and offered valuable
insights into QBER trends, albeit with moderate explanatory
power. Such predictive capabilities enable early detection of
anomalies, support dynamic protocol adaptation, and provide
real-time risk evaluation mechanisms, which are critical for
maintaining the integrity of quantum communication systems.

Ultimately, the integration of machine learning into quantum
communication represents a promising avenue for the develop-
ment of intelligent QKD systems. By forecasting degradation
in performance and identifying potential security threats before
they manifest, this approach contributes to the realization of
scalable, resilient, and practically deployable quantum net-
works.
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