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Assessing Power Allocation Efficiency for RAN in
Cloud-based Systems for 5G Networks

João Albuquerque, Glauco Gonçalves, Aldebaro Klautau

Abstract— Deploying edge and cloud computing architectures
in 5G networks offers significant advantages, including reduced
latency, lower core network traffic, and distributed processing
capabilities. However, relocating latency-sensitive Radio Resource
Management (RRM) functions, such as power allocation, to
edge or cloud nodes may degrade the channel capacity and
performance of User Equipments (UEs). This paper evaluates
the impact of allocating a power allocation function at different
network levels—Radio Access Network (RAN), Mobile Edge
Computing (MEC), and cloud—using the ns-3 simulator with
the 5G-Lena module. We implemented a simple, memoryless
power allocation algorithm to assess channel capacity variations
under varying cloud-distance latency conditions. We analyzed key
performance indicators, including the Round-Trip Time (RTT)
of control packets and channel capacity over time, to investigate
the impact of latency on power allocation efficiency. The results
reveal that allocating the power allocation function closer to the
RAN achieves superior performance, with mean capacity values
and variations meeting 3GPP standards. In contrast, placing the
function at the MEC or cloud led to increased latency, insufficient
capacity levels for some UEs, and more significant deviations from
3GPP requirements.

Keywords— 5G, Radio Access Network, Radio Resource Man-
agement, Cloud, Mobile Edge Computing.

I. INTRODUCTION

The advent of 5G networks has introduced transformative
advancements in connectivity, data rates, and modularity.
These improvements have enabled diverse and flexible archi-
tectures, allowing for dynamic allocation of network functions
and optimized resource management within the core net-
work [1]. As a result, 5G technology has become a cornerstone
for modern communication systems, supporting a wide range
of applications and services. One key shift facilitated by
5G networks is the migration of application allocation from
localized servers to distributed cloud environments, including
edge computing infrastructures [2]. This transition offers the
potential to enhance scalability, flexibility, and resource uti-
lization. Edge cloud systems, in particular, allow for remote
management and orchestration of both software and hardware
components, paving the way for innovative use cases and
performance enhancements.

However, despite this migration’s theoretical advantages,
several practical challenges arise, particularly regarding la-
tency and response time. Functionalities that demand ultra-
low latency, such as Radio Resource Management (RRM)
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and dynamic power allocation, are highly sensitive to delays
introduced by cloud-based processing [3]. Moreover, this
paradigm shift is intrinsically tied to the disaggregation of
the core network into various Virtualized Network Function
(VNF), which can be arbitrarily distributed throughout the
network, enabling a virtualized Next Generation Radio Ac-
cess Network (vNG-RAN) on general-purpose, vendor-neutral
hardware with virtualized functions [4]. Despite the potential
for arbitrary distribution, the challenge lies in finding common
ground regarding the performance of allocating delay-sensitive
functions that require low response times and virtualizing these
functions. This highlights the need to determine the most
efficient approach for distributing them across the network.
Evaluating these impacts through emulated or simulated en-
vironments is essential to understanding the feasibility and
performance trade-offs associated with this paradigm shift.

II. RELATED WORKS

Previous research has acknowledged the challenges and
potential issues of migrating RRM functions to cloud en-
vironments [5], [6]. These studies highlight concerns about
performance evaluation without considering different possible
geographical cloud positions and primarily focus on theoret-
ical models without addressing the practical implications of
implementing power allocation functions in real, emulated,
or simulated 5G network stacks. Moreover, other works have
predominantly explored algorithmic approaches, such as opti-
mization techniques and machine learning models, to improve
power allocation efficiency [7]. While these approaches pro-
vide valuable insights, they are not tested in comprehensive
end-to-end 5G network environments.

Moreover, other recent studies, such as PlaceRAN [4],
have delved into optimizing the placement of virtualized
Radio Acess Network (vRAN) functions within disaggregated
network environments. PlaceRAN presents a comprehensive
optimization model that balances computational resource us-
age and aggregation of radio functions. Evaluating realistic
topologies highlights the trade-offs in computational efficiency
and virtualization. However, it does not compute performance
indicators in an end-to-end simulation scenario, such as ca-
pacity for the end users.

This paper seeks to bridge these gaps by simulating the
migration of RRM functions, focusing on power allocation for
User Equipment (UE), to different geographically positioned
clouds. By incorporating a realistic 5G simulated environ-
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ment using ns-31 and the 5G-Lena module2, it provides a
more accurate end-to-end assessment of the feasibility and
performance of cloud-based RRM implementations, providing
insights into their ability to meet stringent functionality latency
requirements while ensuring optimal resource allocation for
each UE, computing several performance metrics, such as
capacity and Round-Trip Time (RTT) for the end users.

III. SYSTEM MODEL AND CHALLENGES

5G networks are designed to support diverse communi-
cation categories, each with specific service requirements
and performance demands. The three primary categories are
Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-
Latency Communication (URLLC), and Massive Machine-
Type Communication (mMTC). eMBB is optimized for high
data-rate applications, such as ultra-high-definition video
streaming and virtual reality, requiring high throughput, low
latency, and seamless mobility. URLLC addresses mission-
critical applications, including autonomous vehicles and re-
mote surgery, which demand ultra-low latency, high reliability,
and minimal jitter. mMTC targets massive Internet of Things
(IoT) deployments, prioritizing scalability, high connection
density, and low power consumption, often tolerating higher
delays for non-time-sensitive transmissions.

These categories emphasize the need for adaptable and
efficient resource allocation mechanisms to meet their varied
performance requirements. In particular, eMBB poses a unique
challenge due to its demand for high throughput, which is
directly influenced by noise at the receiver and the gain of the
frequency-selective fading channel.

The maximum achievable throughput (for eMBB and other
use cases) is theoretically governed by the Shannon capacity
of the Gaussian channel, expressed as:

C = BW · log2(1 + SNR), (1)

where BW is the bandwidth, and SNR is the signal-to-noise
ratio in linear scale. The allocated SNR depends heavily on
the transmitted power since:

SNR =
Pt · |H(w)|2

N0 ·BW
, (2)

where Pt is the transmitted power, |H(w)|2 represents the
channel’s power, and N0 is the noise Power Spectral Density
(PSD). According to the 3GPP requirements [8], the minimum
value permitted for eMBB is around 50 Mbps in UMa (UMa)
scenarios. To achieve this high value of channel capacity, the
power of the transmission must be modified according to the
noise and the channel gain, i.e., to the SNR’s current state. As
previewed in the requirements, to achieve the 50 Mbps, the
minimum desired SNR∗ for each UE is according to (1):

SNR∗ = 2
C

BW − 1. (3)

Since the SNR is measured at the receiver and the trans-
mitter is responsible for power allocation, obtaining real-time
channel state information poses a challenge. To address this,

1https://www.nsnam.org/
2https://5g-lena.cttc.es/

UE periodically reports a Channel Quality Indicator (CQI) to
the Radio Access Network (RAN). The CQI can be mapped
to an SNR value based on predefined lookup tables [9]. This
mapping allows the RAN to adjust transmission power to meet
throughput requirements dynamically.

Although this process appears straightforward, several chal-
lenges arise due to the latency introduced by cloud-based
RRM processing, which can degrade the accuracy of SNR
estimations. These challenges are particularly significant given
the rapid variations in channel conditions, determined by
the temporal stability of a wireless channel, characterized
by its coherence time, TC. Coherence time represents the
interval during which the wireless channel remains with no
relative variance. Specifically, coherence time is defined as the
duration within which the channel’s time correlation exceeds
0.5. It can be expressed mathematically using the following
equation [10]:

TC =
9c

16πvf
, (4)

where c is the speed of the radio wave, f is the transmission
frequency, and v denotes the relative velocity between the
receiver and transmitter. A high relative velocity v results
in faster channel variations and a shorter coherence time,
whereas stationary scenarios yield longer coherence times due
to minimal relative motion.

Short coherence times or slow updates of channel state
information can lead to delayed power adjustments, resource
underutilization, and potential capacity degradation. Moreover,
migrating RRM functions to remote cloud servers or edge
clouds further exacerbates latency issues, hindering real-time
decision-making. This delay is particularly critical for eMBB
applications, which demand highly accurate and responsive
resource allocation to maintain performance and reliability.
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Fig. 1. Power allocation function placements on top of the interfaces and
protocols stack.

In our context, the power allocation function is imple-
mented as an algorithm within an application. This function
is designed to ensure that the processing delay incurred in
generating the appropriate power allocation remains fixed
at one millisecond, regardless of the location of the power
allocation function. The placement of the power allocation
function follows the Long-Term Evolution (LTE) 4G Non-
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Fig. 2. All entities used in the simulated 5G environment.

Standalone (NSA) architecture, also employed in the 5G-Lena
module [11].

According to this setup, the power allocation function is in-
tegrated into the application layer, as shown in Fig. 1, without
altering the existing protocol stack layers, which include Radio
Resource Control (RRC), Packet Data Convergence Protocol
(PDCP), Radio Link Control (RLC), Medium Access Control
(MAC), and Physical (PHY) layers (the LTE/New Radio (NR)
stack). All nodes’ S1-AP interface, GTPv2, Internet Protocol
(IP), and transport layer stacks remain unchanged. The only
modification is the addition of the new power allocation
application to the application layer in the Packet Data Network
Gateway (PGW), Next Generation Node B (gNB), and the
Internet node, alongside the existing Evolved Packet Core
(EPC) application in the PGW and the end-to-end application
in the Internet node. Consequently, all interfaces, including
S1-MME, S11, and S5, are unaffected. In the following
sections, we demonstrate the power allocation strategy and the
simulated environment used to deploy the simulation. We also
analyze the impact of latency on power allocation efficiency
in cloud-based environments.

IV. ALGORITHM AND POWER ALLOCATION STRATEGY

As discussed in Section III, dynamic power allocation en-
hances the feasibility of eMBB by providing better stability in
maintaining channel capacity and, consequently, the through-
put for each UE. An algorithm was developed to manage
power allocation in a scenario with a single RAN. This al-
gorithm evaluates the current channel state, mapped using the
CQI report values received from each UE. However, as noted
earlier, the reported CQI values may not significantly reflect
the most up-to-date channel conditions when latency increases
between the RAN and the node executing the functionality.

To address this issue, the proposed algorithm operates
memoryless, considering only the current channel state without
accounting for its historical variations. Algorithm 1 illustrates
this approach. The algorithm assumes a maximum allocated
transmission power of 40 dBm per UE. Using Eq. (3) and a
bandwidth of 100 MHz per UE, the target SNR∗ in dB scale
is calculated as −3.83.

Given the known SNR∗, the newly allocated transmission
power for a UE is computed based on the difference between
the desired and current SNR values. According to Eq. (2), the
updated transmission power is expressed as:

Pt = Pt + (SNR∗ − SNR), (5)

on a logarithmic scale.
Because fading channel gain can significantly affect the

SNR, the allocated power may sometimes exceed the allowable
transmission limit. To prevent this, the algorithm enforces
an upper bound on transmission power, ensuring compliance
with realistic power constraints. Similarly, a lower bound is
implemented to guarantee that the allocated power does not
fall below acceptable levels. This dual-bound approach main-
tains the allocated power within operational limits, enabling
practical deployment in real-life transmission scenarios.

Algorithm 1 Power Allocation Algorithm
Require: maxTxPower = 40dBm ▷ Maximum

transmission power
Require: minTxPower = 0dBm ▷ Minimum transmission

power
Require: SNR∗ = −3, 83dB ▷ Desired SNR

if SNR ̸= SNR∗ then
UeTxPower ← currentTxPowerx
UeTxPower = UeTxPower + (SNR∗ − SNR)

if UeTxPower > maxTxPower then ▷ Upper bound
return maxTxPower

else if UeTxPower < minTxPower then ▷ Lower
bound

return minTxPower
end if

end if
return UeTxPower

V. SIMULATED ENVIRONMENT

To evaluate the challenges of power allocation functionality,
we developed a 5G simulation scenario as illustrated in Fig. 2.
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Nine UEs under the same eMBB category were deployed
in this environment using Time-Division Duplexing (TDD).
Communication occurs in a Single-Stream Multiple-Inputs and
Multiple-Outputs (MIMO) configuration, where only one UE
interacts with the RAN at a given time. The core network
employs an NSA architecture, comprising a Mobility Manage-
ment Entity (MME), a PGW, and a Serving Gateway (SGW).
These core functions were migrated to a Mobile Edge Com-
puting (MEC) infrastructure. The connection between gNB
and the core network traverses two switches, each introducing
delays as specified in Fig. 2. These delay values were derived
from measurements based on [12].

The PGW connects to an external Internet node that gener-
ates UE traffic and will also work as the cloud. The traffic
source utilizes User Datagram Protocol (UDP) with fixed
packet sizes, transmitting one packet per 100 milliseconds.
CQI reports are generated during the uplink transmission phase
as part of the power adaptation process. These reports provide
feedback to the RAN about the quality of the radio chan-
nel. Each UE periodically sends CQI feedback, subsequently
mapped to an SNR value.

The power allocation process can occur at different nodes,
including the RAN, MEC, or the Internet (cloud). The gNB
receives CQI reports from all UEs, and maps them in SNR
values, then sends a packet to the next hop if power allocation
is not performed locally at the RAN. The server computes
power allocation and returns the results if configured for MEC
processing. Otherwise, the request is forwarded to the Internet
node for processing. Once power allocation is determined, the
updated configuration flows back through the network to the
gNB, as shown in Fig. 3.

gNbUE MEC Cloud

Map SNR

CQI report

Power
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SNR information

SNR information
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Power information

Fig. 3. The flow diagram of the packets’ information through the network
in the case of the power allocation function in the cloud.

VI. RESULTS

To evaluate the proposed scenario, we implemented the
network setup depicted in Fig. 2 using ns-3, leveraging the
5G-Lena module to deploy 5G features in three distinct
simulations, each differing in the geographical placement of
the power allocation function. The simulation environment, as
discussed previously, follows a drop-based approach, where
UEs positions were randomly assigned but remained consis-
tent across all simulations. Notably, UEs 3, 4, and 5 were
positioned closer to the gNB, while the remaining UEs were

placed at greater distances to prevent significantly higher SNR
values. To ensure symmetry, these UEs were equidistant from
the gNB. All UEs were associated with the same application,
as described in Section V, without any prioritization.

At the start of the simulation, the RAN was initialized with
the same transmission power for all UEs, maintaining uniform
conditions for evaluating power allocation performance. All
results were measured over a 50-second simulation duration,
focusing on their temporal variability. The fading characteris-
tics and channel conditions—whether Line-of-Sight (LoS) or
Non-Line-of-Sight (NLoS)—were updated according to Eq. 4.

TABLE I
RTT PERFORMANCE METRICS FOR CLOUD AND MEC NODES

RTT (ms)

Node Minimum Maximum Average

MEC 18.2 32.3 25.48

Cloud 46.4 59.7 52.59

Table I presents the RTT measurements for power control
packets in two deployment scenarios: cloud and MEC. The
RTT was computed as the time difference between a control
packet’s transmission from the RAN and its return. In both
cases, RTT was influenced by each network topology switch
link latency along the path, while in the cloud scenario, it was
further affected by internet link latency. The RTT for the RAN-
only scenario was not computed, as the link latency between
the UE and gNB was negligible.

In the cloud-based deployment, the evaluated RTT had an
average value of 52.59 milliseconds, fluctuating between 46.4
and 59.7 milliseconds. In contrast, since MEC deployment is
not subject to internet link latency, it exhibited a significantly
lower RTT. The average RTT in MEC-based scenario was
25.48 milliseconds, ranging from 18.2 to 32.3 milliseconds.
In both cases—MEC and cloud—the observed RTT variations
were primarily influenced by buffer queuing and processing
delays within the power allocation function.
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Fig. 4. The ECDF considering all measured UEs channel capacity values
during the simulation.

The RTT measured values will significantly impact the
channel capacity measurements. The channel capacity exhibits
frequent variations due to the immediate application of power
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adjustments whenever a new CQI report is received. This rapid
adaptation attempts to mitigate low SNR values, preserving
channel capacity in scenarios with sudden degradation. As
depicted in Fig. 4, considering all UEs in this measurement,
the power allocation function, when allocated closer to the
receivers, maintains a high percentage of channel capacity
values that fit the 3GPP standards. I.e., when in RAN, 65% of
the evaluated samples are in the requested range, as discussed
in Section III. However, due to high latency in the transport
network, the channel capacity drops and leads to almost 70%
of samples being assessed out of the requisition in cloud
and MEC scenarios, where, when placed in MEC, the overall
ECDF result barely improves.

When assessing the channel capacity per UE, as shown
in Fig. 5, some devices exhibit more consistent and higher
capacity values. This is primarily due to higher channel gain
and reduced fading variation, often resulting from shorter
RAN-to-UE distances, which increase the likelihood of a LoS
condition. Devices 3, 4, and 5 consistently maintain optimal
capacity levels across all three placements, with average values
exceeding 50 Mbps throughout the simulation. In the MEC
scenario, UEs 1 and 8 achieved average capacity values
aligned with the desired requirements, though they recorded
lower minimum capacities even in the most favorable RAN
configuration.
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Fig. 5. The average channel capacity with confidence interval for UEs with
power allocation for each possible placement.

By contrast, the remaining devices were unable to sustain
acceptable average capacities in scenarios where the power
allocation was not centered on the RAN, achieving notable
capacity only at peak moments during the simulation. Specif-
ically, UEs 1, 2, 6, 7, 8, and 9—all located farther from gNB-
1—consistently demonstrated lower capacity values.

VII. CONCLUSION

Our study highlights the critical importance of appropri-
ately placing latency-sensitive application components within
the network hierarchy. By evaluating the deployment of a
memoryless power allocation function at the RAN, MEC, and
cloud levels, we demonstrated that increased distance from the
terminal devices—and the resulting latency—can significantly
degrade the channel capacity experienced by UEs. Through
detailed simulation using ns-3 and the 5G-Lena module, we

measured the RTT, tracked channel capacity variation over
time, and provided a comprehensive statistical analysis for
each UE.

The results indicate that while edge computing brings sev-
eral advantages, not all functions are suitable for offloading
beyond the RAN. When the power allocation function was
executed at the MEC, some UEs failed to achieve capac-
ity levels compliant with 3GPP standards. This issue was
further exacerbated at the cloud level, where both average
capacity and stability deteriorated significantly. These findings
emphasize that deploying latency-sensitive RRM functions at
higher network layers—especially without memory or predic-
tion mechanisms—can undermine system performance. There-
fore, such functions are more effectively hosted at the RAN,
where lower latency allows for more responsive and reliable
operation, preserving the quality of experience for end users.
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