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Distributed MPDR Beamforming in Virtual Arrays
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Abstract— This paper extends the distributed minimum power
distortionless response (MPDR) beamformer to 3D virtual arrays
with heterogeneous node geometries. We first present a system
model of cooperative nodes—each with its own arbitrary ar-
ray—and generalize the distributed MPDR, originally designed
for λ/2-spaced linear arrays, to 3D arrays. We then evaluate
beam pattern shape, directivity, beam efficiency, and bit error
rate (BER), benchmarking these metrics against the centralized
MPDR. Simulations reveal grating lobes for antenna-element
spacings larger than λ/2, but the array gain mitigates their BER
impact. The slow convergence speed of the distributed MPDR
indicates the necessity of searching for techniques to improve
it. With sufficient snapshots, its performance nearly matches
centralized MPDR, confirming its promise for practical virtual
arrays, including satellite swarms.

Keywords— antenna array, distributed beamforming, virtual
array.

I. INTRODUCTION

Low Earth orbit (LEO) megaconstellation of satellites, com-

monly operating at altitudes between 500 km and 2000 km,

have emerged as a transformative paradigm in space com-

munication technology, traditionally dominated by medium

Earth orbit (MEO) and geostationary Earth orbit (GEO)

satellites. Driven by several advances in miniaturization and

cost-effective technologies, private-capital-driven constella-

tions such as Starlink and OneWeb now deliver low-latency

links, allowing unprecedented coverage in remote areas and

disaster-response situations [1, 2].

When it comes to communicating with terrestrial nodes not

originally designed for satellite communications (e.g., smart-

phones), achieving a proper link budget for high-throughput

communications imposes severe constraints on the antenna

size of the space segment. However, the costs associated with

the launch of satellites with large antenna arrays are extremely

high, requiring alternative solutions. In this context, LEO

satellite swarms are being considered for communications [3].

These swarms can be configured in a free-flying formation

(i.e., wirelessly connected) or a tethered formation (i.e., wired

connected) [4]. These swarms may comprise homogeneous

or heterogeneous nodes (i.e., satellites), with each satellite

equipped with its own array. Through coordinated internode
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signaling, the arrays of all satellites collectively form a virtual

antenna array. Consequently, beamforming techniques can be

employed to enhance signal-to-noise ratio (SNR), increase

communication capacity, expand coverage, and improve spec-

tral efficiency, among other benefits [3, 5].

Centralized and distributed beamforming can be applied in

a virtual antenna array. The centralized beamforming relies on

the collected signals from all nodes at a single fusion center,

which computes optimal global weights for a high-precision

beam. This approach offers great performance but requires

wide internode bandwidth, introduces a single point of failure,

and scales poorly with an increasing number of nodes. As

for the distributed approach, it allows each node to compute

and apply its weights based on locally exchanged parameters,

effectively reducing raw-data traffic, tolerating individual fail-

ures, and scaling well with the problem dimension. However, it

requires accurate synchronization among nodes and may result

in suboptimal beams compared to centralized solutions.

Motivated by possible future applications in satellite

swarms, this paper focuses on the more fundamental problem

of designing fully distributed receiver beamforming algorithms

for generic virtual antenna arrays. With this in mind, this

work builds upon the so-called distributed Capon beamformer,

herein named distributed minimum power distortionless re-

sponse (MPDR), introduced by Chen and Vaidyanathan [6]

in the context of λ/2-uniformly spaced linear virtual arrays

comprised of homogeneous nodes. Thus, we extend the dis-

tributed MPDR beamforming algorithm to support virtual

arrays composed of heterogeneous nodes with arbitrary 3D

geometries. In the case of homogeneous nodes, numerical

simulations assess the beam pattern and bit error rate (BER) as

functions of internode distances (both shorter and longer than

λ/2) and the number of snapshots of the acquired signals.

We then evaluate the distributed MPDR for heterogeneous

configurations with internode spacing exceeding λ/2, a typical

scenario in possible future applications. Lastly, we compare

the distributed and centralized MPDR algorithms. The results

confirm the viability of the distributed MPDR in virtual arrays,

while highlighting that reducing the number of snapshots—

e.g., through more accurate covariance estimation—remains

critical for faster convergence.

II. SYSTEM MODEL

Consider a virtual antenna array composed of P nodes

distributed in three-dimensional space (R3), as illustrated in

Fig. 1. Unlike the geometric structure of the λ/2-uniformly

spaced linear array adopted in [6], this paper does not impose

constraints on the spatial arrangement. In this virtual array

model, communication latency and synchronization overhead

are not explicitly accounted for, i.e., we assume perfect phase,
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frequency, and timing synchronization among the nodes. The

internode communication is modeled by an undirected and

connected graph G = (V, E), with nodes represented by the

vertex set V = {1, . . . , P} and bidirectional links represented

by the edge set E , ensuring information exchange across

nodes. Each node p ∈ V hosts a subarray of Kp antenna

elements, whose geometry is selected from a predefined set

comprising one-, two-, or three-dimensional geometries. The

total number of elements in the virtual array is K =
∑P

p=1 Kp.

The coordinates (xp,ℓ, yp,ℓ, zp,ℓ) of the ℓth element at the pth

node are defined on the basis of a global Cartesian coordinate

system, whose origin coincides with the origin of the three-

dimensional space.

x

y

z

1

2

3

P

Fig. 1. P nodes distributed in the three-dimensional space.

Let {sm[n]}, with m ∈ {1, 2, · · · ,M}, denote a

set of discrete-time signals transmitted by M sources.

We assume that the signal sm[n] is a realization of

a wide-sense stationary (WSS) random sequence Sm[n]
satisfying E{Sm[n]} = 0, E{Sm[n]S∗

m[n+ k]} = σ2
Sm

δ[k],
E{Si[n]S

∗
j [n + l]} = 0, i 6= j, i, j ∈ {1, 2, . . . ,M},

with E{·} denoting expectation and (·)∗, complex conjugation.

Each transmitted signal sm[n] is composed of symbols that

belong to a constellation set Cm. Narrowband array processing

is assumed, considering that the waveforms vary slowly in time

and space relative to their wavelength.

Let xp[n] = [xp,1[n] xp,2[n] · · · xp,Kp
[n]]T denote the re-

ceived vector at node p during snapshot n. By concate-

nating the received vectors from all nodes in the vector

x[n] = [xT
1[n] x

T
2[n] · · · x

T
P [n]]

T, we can write

x[n] = As[n] + v[n], (1)

where s[n] = [s1[n] s2[n] · · · sM [n]]T is the transmitted

vector, A = [a1 a2 · · · aM ] is the steering matrix associated

with the transmitted signals, and v[n] denotes the noise vector.

The overall steering vector corresponding to the signal from

the mth source is defined as am = [aT
m,1 a

T
m,2 · · · a

T
m,P ]

T,

with the pth node’s steering vector given by

am,p = [am,p,1 am,p,2 · · · am,p,Kp
]T. The phase shift at

the (m, p, ℓ)th element is modeled as [7]

am,p,ℓ = e−jk γm,p,ℓ , (2)

with γm,p,ℓ = xp,ℓ sin θm,p cosφm,p+ yp,ℓ sin θm,p sinφm,p+
zp,ℓ cos θm,p, k = 2π/λ being the wave number, and λ being

the wavelength. The angles θm,p and φm,p are, respectively,

the elevation and azimuth associated with the direction of

arrival (DOA) of the signal transmitted by the mth source at

node p.

Considering that node p applies the weight vector

wp = [wp,1 wp,2 · · · wp,Kp
]T, the beamforming output at

snapshot n is given by

y[n] = w
†
x[n] = w

†
As[n] +w

†
v[n], (3)

where w = [wT
1 w

T
2 · · · w

T
P ]

T is the concatenated weight

vector and (·)† denotes the Hermitian transpose. Section III

describes the centralized MPDR beamformer, which is used

to obtain the optimal weight vector w.

III. THE CENTRALIZED MPDR BEAMFORMER

The MPDR receiver beamformer [7] minimizes the array

output power subject to a unity-gain constraint in the direction

of the desired source. It is formulated as

minimize
w

w
†
Rxxw subject to w

†
am = 1, (4)

where w denotes the beamforming weight vector, Rxx is

the covariance matrix of the received signals, assumed to be

positive-definite, and am is the steering vector corresponding

to the desired source or the signal of interest (SOI), for a given

m ∈ {1, 2, . . . ,M}. The solution to this problem is

w =
R

−1
xx

am

a
†
mR

−1
xxam

, (5)

which ensures the preservation of signals coming from the

desired direction while minimizing interference and noise

coming from other directions. In practice, the actual covariance

matrix is unknown and replaced by its sample estimate

R̂xx =
1

N

N−1∑

n=0

x[n]x†[n], (6)

where N is the number of snapshots.

The centralized MPDR beamformer for virtual arrays as-

sumes a fusion node collecting raw data from all nodes to com-

pute (5). This centralized approach involves extensive raw data

exchange and significant computational complexity, mainly

due to the inversion of Rxx. A computational complexity

reduction proposed in [6] involves the use of the conjugate

gradient (CG) method to directly compute R
−1
xx

am.

IV. THE DISTRIBUTED MPDR BEAMFORMER

Distributed array signal processing techniques are particu-

larly important when facing limited processing capabilities of

nodes comprising the virtual array and restricted bandwidth for

internode data exchanges, motivating the use of the distributed

MPDR beamformer introduced in [6]. The distributed MPDR

beamformer offers two primary advantages: (i) it significantly

reduces internode communications by requiring only limited

data exchange of ancillary variables rather than full-centralized

processing with transmission of raw acquired data; and (ii) it

lowers the computational complexity by enabling each node

to process only its own received signals and compute its local

weight vector wp independently for p ∈ {1, 2, . . . , P}. For a

detailed analysis of computational complexity, see [6].

Algorithm 1 generalizes the distributed MPDR beamformer

described in [6], employing an average consensus (AC) mech-

anism [8] to execute global operations without explicitly

forming the full covariance matrix. Each node performs local
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Algorithm 1 Distributed MPDR Beamformer

1: inputs: am, {x[n]}N−1

n=0 , K, N, P, ǫ
2: e0 = am

3: a0 = e
†
0 e0

4: d0 = e0

5: h0 = 0

6: for i = 0 to K − 1 do

7: for n = 0 to N − 1 do

8: t[n] = P · ACp

(

x†
p[n]di,p

)

9: end for

10: for p = 0 to P − 1 do

11: qi,p = 1

N

∑N−1

n=0
xp[n] t[n]

12: end for

13: bi = P · ACp(d
†
i,p qi,p)

14: αi = ai/bi
15: for p = 0 to P − 1 do

16: hi+1,p = hi,p + αi di,p

17: ei+1,p = ei,p − αi qi,p

18: end for

19: ai+1 = P · ACp(e
†
i+1,p ei+1,p)

20: if ai+1 ≤ ǫ then

21: break ⊲ Residual is sufficiently small
22: end if

23: βi = ai+1/ai

24: for p = 0 to P − 1 do

25: di+1,p = ei+1,p + βi di,p

26: end for

27: end for

28: w = hi+1/a
†
mhi+1

29: return w

computations based on its measurement vector xp, using

average consensus to estimate global quantities like the inner

products bi and the residual norm ai. These consensus-based

estimates enable nodes to locally update intermediate solu-

tions, residuals, and search directions within the CG method.

Iterations continue until the consensus-based estimate of the

residual norm ai+1 falls below a predefined threshold ǫ. Fi-

nally, a global normalization of the aggregated solution yields

the weight vector. Therefore, the distributed algorithm utilizes

average consensus to compute inner products locally, thereby

facilitating a fully distributed CG implementation without the

need to form the global covariance matrix explicitly.

In contrast to [6], the steering vector am is generalized to

accommodate heterogeneous subarray geometries—configured

in one, two, or three dimensions—with different numbers of

antenna elements. Furthermore, unlike [6], the model pre-

sented in Section II assumes arbitrary node locations, explicitly

accounting for potential grating lobes that arise when internode

distances exceed λ/2 [9], which were not addressed in [6].

V. PERFORMANCE COMPARISON

This section presents a numerical analysis of the theoret-

ical MPDR (T-MPDR), centralized MPDR (C-MPDR), and

distributed MPDR (D-MPDR). The T-MPDR was computed

using (5), whereas C-MPDR and D-MPDR were obtained

through numerical simulations based on Sections III and IV,

respectively. To do so, we considered a single source (M = 1)

emitting Gray-coded 4-phase shift keying (PSK) symbols with

unit average power (σ2
S1

= 1), additive white Gaussian noise

x

y

z

Fig. 2. Illustration of the homogeneous nodes in three-dimensional space.

(σ2
V = 0.1), and ǫ = 10−8. Unless stated otherwise, the

wavelength was normalized to λ = 1.

We considered 20 independent Monte Carlo trials to

generate the numerical results. These simulations yielded

quantities such as BER values and beam patterns, i.e.,

h(θ, φ) = w
T
a(θ, φ), with a(θ, φ) denoting a general steer-

ing vector composed of elements analogous to those in (2).

Based on the beam pattern h(θ, φ), both directivity and

beam efficiency can be evaluated. These metrics are derived

from the radiation intensity, which can be expressed by

U(θ, φ) = |h(θ, φ)|2. Consequently, the directivity is given by

D =
4πU(θm, φm)∫∫
[0,4π]

U(θ, φ) dΩ
, (7)

where dΩ = sin θ dθ dφ and U(θm, φm) is the maximum

radiation intensity in the direction of arrival of am. The beam

efficiency is expressed as

ηbeam =

∫∫
ΩML

U(θ, φ) dΩ∫∫
[0,4π]

U(θ, φ) dΩ
, (8)

where ΩML refers to the main lobe region. The remainder of

this section is divided into two parts, presenting results for

homogeneous and heterogeneous nodes.

A. Homogeneous nodes

A planar virtual array with eight nodes (P = 8), as

illustrated in Fig. 2, was first simulated to assess the impact

of grating lobes in a homogeneous configuration. Each node

hosted a 4×4 rectangular subarray in the yz-plane, with intern-

ode spacings dinter ∈ {λ/4, λ/2, 3λ/2}. Nodes were connected

in a line-graph topology with sequential communication links.

The distance between the elements of a subarray was d = λ/2
and the direction of arrival was fixed at an azimuth angle

φ1,p = 40◦, ∀ p and elevation angle θ1,p = 60◦, ∀ p.

Fig. 4 shows the overlaid normalized polar beam patterns

for the three spacings, assuming the T-MPDR. For the smallest

spacing (dinter = λ/4), the array achieved a directivity of

19.92 dB with beam efficiency of 0.7561. At dinter = λ/2,

the directivity increased to 20.65 dB and the beam efficiency

increased to 0.7843. For the largest internode spacing (dinter =
3λ/2), the directivity achieved 20.73 dB whereas the beam

efficiency dropped to 0.6481 due to significant energy leakage

into grating lobes. These results indicate that, although increas-

ing element spacing enhances directivity, it may exacerbate

sidelobes, thus reducing beam efficiency.

The mean-squared error (MSE) convergence of D-MPDR

compared to T-MPDR for N ∈ {103, 104, 105, 106} is pre-
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Fig. 3. Beam pattern of T-MPDR and D-MPDR as a function of φ in the plane θ = 60
◦ with different N , assuming d ∈ {λ/4, λ/2, 3λ/2}.
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Fig. 4. Beam pattern of the T-MPDR as a function of φ in the plane θ = 60
◦.

sented in Table I. Note that the number of snapshots had a

greater influence on convergence than the variation of the

internode spacing, emphasizing the need to accelerate the

convergence rate.

Figs. 3(a)-(c) depict the polar beam patterns (in dB) in the

azimuth plane at φ1,p = 40◦, ∀ p for (a) dinter = λ/4, (b)

dinter = λ/2, and (c) dinter = 3λ/2. In each of the three

subplots, four curves corresponding to different numbers of

snapshots are overlaid to illustrate the convergence behavior

of the D-MPDR. As the number of snapshots increased,

the estimated beam patterns converged toward the theoretical

MPDR response. Therefore, the number of snapshots was

the primary driver of convergence, in agreement with the

MSE results in Table I. Improvements must be introduced to

reduce the necessary number of snapshots for convergence to

a feasible one.

TABLE I

MSE FOR DIFFERENT ELEMENT SPACINGS AND NUMBER OF SNAPSHOTS

Number of
snapshots

MSE

λ/4 λ/2 3λ/2

10
3

5.91× 10
−4

5.98× 10
−4

5.03× 10
−4

10
4

4.67× 10
−5

4.73× 10
−5

4.69× 10
−5

10
5

4.89× 10
−6

5.08× 10
−6

4.93× 10
−6

10
6

4.44× 10
−7

4.94× 10
−7

4.14× 10
−7

Figs. 5(a)–(c) show BER versus Eb/N0 for T-MPDR and

D-MPDR at various snapshot counts N . With N = 103, BER

was highest—deviating significantly from the T-MPDR—due

to poor covariance estimation. As N grows, the BER curves

move closer to the ideal, and at N = 106 they overlap. Due

to the considerable array gain, BER was nearly the same

for all spacings dinter. A comparison between D-MPDR and

T-MPDR at a BER of 10−4 reveals approximate losses of

0.75 dB for N = 106, 4.34 dB for N = 105, 12.44 dB for

N = 104 and 26.75 dB for N = 103. These values are in

good agreement with Table I and underscore how the snapshot

count strongly affects D-MPDR performance. In particular, the

steep loss at N = 103 underscores the need to accelerate the

convergence rate of D-MPDR. This behavior is attributed to

the low network connectivity, as higher connectivity yields

faster convergence.

B. Heterogeneous nodes

A virtual array of six heterogeneous nodes (P = 6),

with λ1 = 8λ was considered in the simulations reported

in this subsection. Each node employed a distinct subarray

geometry, whose subarray parameters are listed in Table II.

The nodes were positioned as illustrated in Fig. 6, meaning

that dinter > λ1/2 for all nodes. The D-MPDR and C-MPDR

were executed using N = 106 snapshots.

Fig. 7 displays the resulting polar beam patterns. In

terms of directivity, T-MPDR achieved the highest directivity

D = 18.49 dB, while the distributed implementation closely

followed with D = 18.13 dB. The C-MPDR exhibited a mod-

est degradation to D = 18.07 dB, reflecting the impact of

processing all snapshots in a single node without internode

TABLE II

SUBARRAY GEOMETRIES AND PARAMETERS

Geometry Parameters

Linear K1 = 9 and d = λ1/2

Rectangular K2 = 12 and d = λ1/2

Cube
Surface

K3 = 26 and d = λ1/2

Elliptical K4 = 15, a = λ1 and b = λ1/2

Concentric
Circular

K5,r1 = 6, K5,r2 = 12, K5,r3 = 16,
r1 = 3λ1/2π, r2 = 3λ1/π, r3 = 4λ1/π

Spherical K6 = 40 and r = λ1/2
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Fig. 5. BER versus Eb/N0 for T-MPDR and D-MPDR with different N , assuming d ∈ {λ/4, λ/2, 3λ/2}.

cooperation. When examining beam efficiency, the distributed

algorithm again approached the theoretical optimum (ηbeam =
0.3634 vs. 0.3782 for T-MPDR), whereas the C-MPDR lagged

at ηbeam = 0.3477. These results show that the D-MPDR

achieves near-theoretical directivity and efficiency, making it

an attractive solution for virtual arrays constituted by hetero-

geneous nodes.

x
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z
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cube surface
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linear

rectangular

spherical

Fig. 6. Illustration of the heterogeneous nodes in three-dimensional space.
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Fig. 7. Beam pattern of T-MPDR, C-MPDR, and D-MPDR as a function of
φ in the plane θ = 60

◦ for heterogeneous nodes.

VI. CONCLUSIONS

This paper generalized the distributed MPDR receiver

beamformer for narrowband communications by using a vir-

tual array composed of generic nodes in three-dimensional

space, and compared it to its centralized MPDR counterpart.

Internode spacings beyond λ/2 resulted in grating lobes in

homogeneous node configurations. Furthermore, array gains

could be traded off to keep the BER sufficiently low when

the number of snapshots was small. Although the resulting

distributed MPDR exhibited slow convergence, its perfor-

mance approached the levels of its centralized counterpart with

sufficient snapshots. In heterogeneous topologies, it remained

robust to internode spacings beyond λ/2 due to the array gain.

These findings confirm the advantages of further developing

distributed array processing in virtual arrays. For future work,

we aim to investigate the impact of network connectivity

on the convergence and adaptive versions of the D-MPDR

beamformer.
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